Advertisement

Ingenieur-Archiv

, Volume 44, Issue 6, pp 409–420 | Cite as

Zur Ermittlung der mitwirkenden Flüssigkeitsmasse bei der Eigenschwingungsberechnung flüssigkeitsgefüllter Kreiszylinderschalen

  • D. Fischer
  • H. Steiner
Article

Übersicht

Ziel der Arbeit ist es, eine modifizierte Schalendichte, welche die mitschwingende Flüssigkeitsmasse berücksichtigt und gleichmäßig am Umfang verteilt ist, anzugeben. Die Flüssigkeit kann dabei inkompressibel oder kompressibel sein, sie wird jedoch als nicht viskos vorausgesetzt. Die Eigenfrequenzen der so modifizierten Zylinderschale sind dann gleich jenen des gekoppelten Systems Schale-Flüssigkeit. Die Ergebnisse sind nicht an eine spezielle Theorie dünnwandiger Zylinderschalen gebunden.

Summary

The objective of this investigation is to define a uniformly distributed apparent mass density of the empty shell such that the natural frequencies of the modified shell and those of the hydroelastically coupled system shell-fluid will be identical. The fluid may be incompressible or compressible but is assumed inviscid. The results are not linked to a specific thin shell theory.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Moiseyev, N. N., Rumyantsev, V. V.: Dynamic Stability of Bodies Containing Fluid. Vol. 6, Applied Physics and Engineering, Berlin/Heidelberg/New York 1968Google Scholar
  2. 2.
    Rapoport, I. M.: Dynamics of Elastic Containers Partially Filled with Liquid. Vol. 5, Applied Physics and Engineering, Berlin/Heidelberg/New York 1968Google Scholar
  3. 3.
    Rayleigh, Lord (Sir John William Strutt): On the Vibrations of a Cylindrical Vessel Containing Liquid. Philos. Mag. 15 (1883) S. 385–389Google Scholar
  4. 4.
    Nikolai, E. L.: On the Vibrations of a Thin-Walled Cylinder. Zhurnal Russkogo fiziko-khimicheskogo obshchestva 11 (1909), sec. 1Google Scholar
  5. 5.
    Lindholm, U. S., Kana, D. D., Abramson, H. N.: Breathing Vibrations of a Circular Cylindrical Shell with an Internal Liquid. J. Aerospace Sci. 29 (1962), S. 1052–1059Google Scholar
  6. 6.
    Breslavskii, V. E.: Vibrations of Cylindrical Shells Filled with Liquid. Proc. 4th All-Union Conference on Shells and Plates, Erevan, 24–31 Oct. 1962, Israel Program for Scientific Translation, Jerusalem 1966, S. 227–232Google Scholar
  7. 7.
    Pshenichnov, G. I.: Exact Solutions of Some Problems Concerned with Oscillations of Fluid Contained in an Elastic Mornentless Shell. PMM-J. Appl. Math. Mech. 35 (1971) S. 689–694Google Scholar
  8. 8.
    Bauer, H. F.: Hydroelastic Vibrations of an Uniformly Rotating Infinitely Long Circular Cylindrical Container. Acta Mech. 12 (1971) S. 307–326Google Scholar
  9. 9.
    Mizoguchi, K.: Vibration of a Cylindrical Shell Containing a Flowing Fluid. Bull. J.S.M.E. 10 (1967) S. 59–67Google Scholar
  10. 10.
    Shkenev, Y. S.: Dynamics of Elastic and Elastic-Viscous Shells filled with an Ideal Liquid. Proc. 4th All-Union Conference on Shells and Plates, Erevan, 24–31 Oct. 1962, Israel Program for Scientific Translation, Jerusalem 1966, S. 925–935Google Scholar
  11. 11.
    Bentley, P. G., Firth, D.: Acoustically Excited Vibrations in a Liquid-Filled Cylindrical Tank. J. Sound Vibration 19 (1971) S. 179–191Google Scholar
  12. 12.
    Diaz, J. M., Jain, R. K.: Vibration Analysis of Pump Discharge Lines. Presented at the A.S.C.E. National Meeting on Water Resources Engineering, New Orleans, Febr. 1969Google Scholar
  13. 13.
    Cheng, C. M.: Analysis of Pipe Vibrations with Internal Fluid Flow, Byron Jackson Pump Co. Report, 1952Google Scholar
  14. 14.
    Kito, F.: The Vibration of Penstocks. Waterpower 11 (1959), S. 379–385, 392Google Scholar
  15. 15.
    Bellometti, U.: Vibrazioni delle condotte forzate idroelettriche. Construzioni Metalliche 23 (1971) S. 40–43Google Scholar
  16. 16.
    Leissa, A. W.: Vibration of Shells. NASA SP-288, U.S. Government Printing Office, Washington, D.C., Seite 290 ffGoogle Scholar
  17. 17.
    Flügge, W.: Statik und Dynamik der Schalen. 2. Auflage, Berlin/Göttingen/Heidelberg 1957Google Scholar
  18. 18.
    Kalnins, A.: Free Vibration of Rotationally Symmetric Shells. J. Acoust. Soc. Am. 36 (1964) S. 1355–1365Google Scholar
  19. 19.
    Abramowitz, M., Stegun, I. A.: Handbook of Mathematical Functions, 10. edt., Washington: National Bureau of Standards, Applied Mathematics Series 55/1970Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • D. Fischer
    • 1
  • H. Steiner
    • 1
  1. 1.VÖEST - ALPINE AG Linz Technische ProblemanalyseLinzÖsterreich

Personalised recommendations