Conditions for absolute continuity between a certain pair of probability measures

  • T. T. Kadota
  • L. A. Shepp


Stochastic Process Probability Measure Probability Theory Mathematical Biology Absolute Continuity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kakutani, S.: On equivalence of infinite product measures. Ann. of Math. II. Ser. 49, 214–224(1948).Google Scholar
  2. 2.
    Shepp, L. A.: Gaussian measures in function space. Pacific J. Math. 17, 1, 167–173 (1966).Google Scholar
  3. 3.
    Gundy, R. R.: The martingale version of a theorem of Marcinkiewicz and Zygmund. Ann. math. Statistics 38, 3, 725–734 (1967).Google Scholar
  4. 4.
    Kadota, T. T.: Nonsingular detection and likelihood ratio for random signals in white Gaussian' noise. IEEE Trans. Inform. Theory IT-16, 3, 291–298 (1970).Google Scholar
  5. 5.
    Wong, E.: Likelihood ratio for random signals in Gaussian white noise. (Internal Memorandum of Bell Telephone Laboratories.)Google Scholar
  6. 6.
    Kailath, T.: A general likelihood ratio formula for random signals in Gaussian noise. IEEE Trans. Inform. Theory IT-15, 3, 350–361 (1969).Google Scholar
  7. 7.
    Pitcher, T. S.: On the sample functions of processes which can be added to a Gaussian process. Ann. math. Statistics 34, 1, 329–333 (1963).Google Scholar
  8. 8.
    Grenander, U.: Stochastic processes and statistical inference. Ark. Mat. 17, 1, 195–277 (1950).Google Scholar
  9. 9.
    Wonham, W. M.: Lecture notes on stochastic control, part I, Center for Dynamical Systems, Div. Appl. Math., Brown University (1967).Google Scholar
  10. 10.
    Rozanov, Yu. A.: On the density of one Gaussian measure with respect to another. Theor. Probab. Appl. 7, 1, 82–87 (1962).Google Scholar
  11. 11.
    Doob, J.L.: Stochastic processes, p. 319–321, 440–441. New York: John Wiley 1953.Google Scholar
  12. 12.
    Halmos, P. R.: Measure theory, p. 134–135. Princeton, New Jersey: Van Nostrand 1950.Google Scholar
  13. 13.
    Shepp, L. A.: Radon-Nikodym derivative of Gaussian measures. Ann. math. Statistics 37, 2, 321–354 (1966).Google Scholar
  14. 14.
    Bharucha, B. H., Kadota, T. T.: On the representation of continuous-parameter processes by a sequence of random variables. IEEE Trans. Inform. Theory IT-16, 2, 139–141 (1970).Google Scholar
  15. 15.
    Kadota, T. T.: Simultaneous diagonalization of two covariance Kernels and application to second order stochastic processes. J. Soc. industr. appl. Math. 15, 6, 1470–1480 (1967).Google Scholar
  16. 16.
    Loève, M.: Probability theory, 2nd ed., p. 478–479. Princeton, New Jersey: Van `Nostrand 1960.Google Scholar
  17. 17.
    Skorokhod, A. V.: Studies in the theory of random processes. Massachusetts: Addison-Wesley 1965.Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • T. T. Kadota
    • 1
  • L. A. Shepp
    • 1
  1. 1.Bell Telephone Laboratories, Inc.Murray HillUSA

Personalised recommendations