Advertisement

Ingenieur-Archiv

, Volume 57, Issue 6, pp 401–412 | Cite as

Thermoelastic waves in a thin plate with mixed boundary conditions and thermal relaxation

  • C. V. Massalas
  • V. K. Kalpakidis
Originals

Summary

The generalized theory of Lord and Shulman is used to study the characteristics of the wave motion in a thin plate of infinite length under plane stress state. The frequency equations of the plate are discussed for mixed boundary conditions and for isothermal and insulated edges. For the limiting frequency ω → ∞ analytical expressions for the phase velocity v, the attenuation constant S and the specific loss are found and the variation of v and S with the frequency are presented in tables. Finally the paths of particles of the plate are determined and the role of the relaxation parameter is discussed.

Keywords

Neural Network Attenuation Information Theory Generalize Theory Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Thermoelastische Wellen in einer dünnen Platte mit gemischten Grenzbedingungen und thermischer Relaxation

Übersicht

Unter Anwendung der allgemeinen Theorie von Lord und Shulman werden die Eigenschaften der Wellenbewegung einer dünnen Platte unendlicher Länge im ebenen Spannungszustand untersucht. Ferner werden die Frequenzgleichungen der Platte für gemischte Grenzbedingungen sowie isotherme und isolierte Ecken diskutiert. Für die Grenzfrequenz ω → ∞ werden analytische Ausdrücke für die Phasen-Geschwindigkeit v, die Dämpfungskonstante S und die spezifischen Verluste ermittelt und die Abhängigkeit von v und S von der Frequenz in Tabellen dargestellt. Schließlich werden die Teilchenbewegungen der Platte bestimmt und die Rolle der Relaxationsparameter diskutiert.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Deresiewicz, H.: Thermal coupling waves in a plate. Acta Mech. 21 (1975) 329–342Google Scholar
  2. 2.
    Lord, H.; Shulman, Y.: A generalized dynamical theory of thermoelasticity. Mech. Phys. Solids 15 (1967) 299–309Google Scholar
  3. 3.
    Green, A.; Lindsay, K.: Thermoelasticity. J. Elasticity 2 (1972) 1–7Google Scholar
  4. 4.
    Puri, P.: Plane waves in generalized thermoelasticity. Int. J. Eng. Sci. 11 (1973) 735–744Google Scholar
  5. 5.
    Nayfeh, A.; Nemat-Nasser, S.: Thermoelastic waves in solids with thermal relaxation. Acta Mech. 12 (1971) 53–69Google Scholar
  6. 6.
    Nayfeh, A.; Nemat-Nasser, S.: Electromagneto-thermoelastic plane waves in solids with thermal relaxa- tion. J. Appl. Mech. (1972) 108–113Google Scholar
  7. 7.
    Agarwal, Y.: On plane waves in generalized thermoelasticity. Acta Mech. 31 (1979) 185–198Google Scholar
  8. 8.
    Agarwal, Y.: On electromagneto-thermoelastic plane waves. Acta Mech. 34 (1979) 181–197Google Scholar
  9. 9.
    Agarwal, Y.: On surface waves in generalized thermoelasticity. J. Elasticity 8 (1978) 171–177Google Scholar
  10. 10.
    Chandrasekherajah, C.; Spinantiah, K.: Waves of general type propagation in liquid layer sandwiched between two thermoelastic half-spaces. Int. J. Eng. Sci. 22 (1984) 301–310Google Scholar
  11. 11.
    Mondal, S.: On the propagation of a thermoelastic wave at a thin infinite plate immersed in an infinite liquid with thermal relaxation. Indian J. Pure Appl. Math. 14 (1973) 185–193Google Scholar
  12. 12.
    Chandrasekharajah, C.; Spikantiah, K.: Edge waves in a thermoplastic plate. Int. J. Eng. Sci. 23 (1985) 65–77Google Scholar
  13. 13.
    Massalas, C.: Thermoelastic waves in a thin plate. Acta Mech. 65 (1986) 51–62Google Scholar
  14. 14.
    Mindlin, D.: Waves and vibrations in isotropic elastic plates. In: Goodier, J.; Hoff, N. (eds.) Structural mechanics, pp. 199–232. New York: Pergamon Press 1960Google Scholar
  15. 15.
    Nowacki, W.: Dynamic problems of thermoelasticity. Leyden: Noordhoff 1975Google Scholar
  16. 16.
    Mauer, M.: Relaxation model for heat conduction in metals. J. Appl. Phys. 40 (1969) 5123–5130Google Scholar
  17. 17.
    Chadwick, P.: Thermoelasticity. The dynamical theory. In: Sneddon, I.; Hill, R. (eds.) Progress in solid mechanics, vol. 1, pp. 265–328. Amsterdam: North-Holland 1964Google Scholar
  18. 18.
    Deresiewicz, H.: Plane waves in a thermoelastic solid. J. Acoust. Soc. Am. 29 (1957) 204–209Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • C. V. Massalas
    • 1
  • V. K. Kalpakidis
    • 1
  1. 1.Dep. of MathematicsUniversity of IoanninaIoanninaGreece

Personalised recommendations