Ingenieur-Archiv

, Volume 59, Issue 6, pp 401–411 | Cite as

Stress concentration factors due to the bending of a thick plate with circular hole

  • P. S. Chen
  • R. R. Archer
Originals

Summary

Solutions of a biharmonic equation together with four Helmholtz equations governing a twelfthorder thick plate theory in cylindrical coordinates are derived in a form suitable for finding corrections to previous lower-order thick plate results. As an example, for an infinite plate with a circular hole subjected to bending moments at two parallel outside edges, detailed comparisons of values of a stress couple concentration factor and a stress concentration factor are made between the present theory and previous results due to Alblas, Reissner, and Cheng.

Keywords

Neural Network Complex System Information Theory Nonlinear Dynamics Stress Concentration 

Spannungskonzentrationsfaktoren für die Biegung dicker Platten mit Kreisloch

Übersicht

Für die Grundgleichungen einer Theorie 12. Ordnung für dicke Platten, bestehend aus einer biharmonischen Gleichung und vier Helmholtz-Gleichungen, werden in Polarkoordinaten Lösungen bestimmt, um Korrekturen zu früheren Ergebnissen nach Theorien geringerer Ordnung angeben zu können. Als Beispiel werden für eine unendliche, an zwei parallelen Seiten durch ein Biegemoment belastete Platte mit Kreisloch die Konzentrationsfaktoren für Biegemoment und Randspannung verglichen, die sich nach der hier benutzten Theorie und aus früheren Arbeiten von Alblas, Reissner und Cheng ergeben.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alblas, J. B.: Theorie van de Driedimensionale Spanningstoestad in een Doorboorde Plaat. Diss. Delft 1957Google Scholar
  2. 2.
    Abramowitz, M.; Stegun, I. A.: Handbook of mathematical functions with formulas, graphs and mathematics tables. New York: Dover 1965Google Scholar
  3. 3.
    Allen, E. E.: Analytical approximations. Mathematical Tables Aids Comp. (MTAC) 8 (1954) 240–241Google Scholar
  4. 4.
    Allen, E. E.: Polynomial approximations to some modified Bessel functions. Mathematical Tables Aids Comp. (MTAC) 10 (1956) 162–164Google Scholar
  5. 5.
    Chen, P. S.: A study of thick plate theories up to twelfth order. Master's Project. Dep. Civil Eng., University of Massachusetts, Amherst, MA, 1986Google Scholar
  6. 6.
    Chen, P. S.: On the accuracy of the higher order plate and elastic layer theories. Ph. D. Diss. Dep. Civil Eng., University of Massachusetts, Amherst, MA, 1988Google Scholar
  7. 7.
    Chen, P. S.; Archer, R. R.: Solutions of a twelfth order thick plate theory. (Subm. for publ. in: Acta Mech.)Google Scholar
  8. 8.
    Chen, P. S.; Archer, R. R.: Higher order theories for thick plates. Tech. Rept. No EM88-1, Dep. Civil Eng., University of Massachusetts, Amherst, MA, 1988Google Scholar
  9. 9.
    Chen, P. S.; Archer, R. R.: A twelfth order thick plate theory in cylindrical coordinates, — computer programs for the derivation of the boundary conditions of the theory. Tech. Rept. No EM88-2, Dept. Civil Eng., University of Massachusetts, Amherst, MA, 1988Google Scholar
  10. 10.
    Cheng, S.: Elasticity theory of plates and a refined theory. J. Appl. Mech. 46 (1979) 644–650Google Scholar
  11. 11.
    Crandall, S. H. et al.: An Introduction to the mechanics of solids (2nd ed.). New York: McGraw-Hill 1978Google Scholar
  12. 12.
    Goodier, N. J.: The influence of circular and elliptical holes on the transverse flexure of elastic plates. Phil. Mag., Ser. 7, 22 (1936) 69–80Google Scholar
  13. 13.
    Hildebrand, F. B.: Advanced calculus for applications (2nd ed.). Englewood Cliffs, N.J.: Prentice-Hall (1976)Google Scholar
  14. 14.
    Lo, K. H.; Christensen, R. M.; Wu, E. M.: A high-order theory of plate deformation, part 1, homogeneous plates. J. Appl. Mech. 44 (1977) 663–668Google Scholar
  15. 15.
    MACSYMA Group: MACSYMA reference manual, Version Ten. Symbolics Inc. of Cambridge, MA, 1983Google Scholar
  16. 16.
    Reissner, E.: The effects of transverse shear deformation on the bending of elastic plates. Trans. ASME J. Appl. Mech. 12 (1945) 69–77Google Scholar
  17. 17.
    Reissner, E.: On the transverse bending of plates, including the effects of transverse shear deformation. Int. J. Sol. Struct. 11 (1975) 569–573Google Scholar
  18. 18.
    Timoshenko, S.; Goodier, J. N.: Theory of elasticity (3rd ed.). New York: McGraw-Hill 1970Google Scholar
  19. 19.
    U.S. National Bureau of Standards: Table of the Bessel functions J 0 and J 1 for complex arguments. New York: Columbia University Press, 1943Google Scholar
  20. 20.
    U.S. National Bureau of Standards: Table of the Bessel functions Y 0 and Y 1 for complex arguments. New York: Columbia University Press, 1950Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • P. S. Chen
    • 1
  • R. R. Archer
    • 1
  1. 1.Department of Civil EngineeringUniversity of MassachusettsAmherstUSA

Personalised recommendations