Advertisement

Relation entre théorème central-limite et loi du logarithme itéré dans les espaces de Banach

  • B. Heinkel
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Heinkel, B.: Relation between central-limit theorem and law of the iterated logarithm in Banach spaces. Probability in Banach spaces 2 — Oberwolfach 1978. Lecture Notes in Math. 709, 145–150. Berlin-Heidelberg-New York: Springer 1979Google Scholar
  2. 2.
    Heinkel, B.: Sur la loi du logarithme itéré dans les espaces de Banach. C.R. Acad. Sci. Paris Sér. A, 287, 839–842 (1978)Google Scholar
  3. 3.
    Jain, N.C.: Central-limit theorem in a Banach space. Probability in Banach spaces — Oberwolfach 1975. Lecture Notes in Math. 526, 113–130. Berlin-Heidelberg-New York: Springer 1976Google Scholar
  4. 4.
    Karlin, S., Ziegler, Z.: Some applications to inequalities of the method of generalized convexity. J. Analyse Math. 30, 281–303 (1976)Google Scholar
  5. 5.
    Kuelbs, J.: Kolmogorov law of the iterated logarithm for Banach space valued random variables. Illinois J. Math. 21–4, 784–800 (1977)Google Scholar
  6. 6.
    Kuelbs, J., Zinn, J.: Some stability results for vector valued random variables. Ann. Probability 7, 75–84 (1979)Google Scholar
  7. 7.
    Pisier, G.: Le théorème de la limite centrale et la loi du logarithme itéré dans les espaces de Banach. Séminaire Maurey-Schwartz 1975–76, exposés nos 3 et 4Google Scholar
  8. 8.
    Pisier, G., Zinn, J.: On the limit theorems for random variables with values in the space L p (2≦p<+∞). Z. Wahrscheinlichkeitstheorie verw. Gebiete 41, 289–304 (1978)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • B. Heinkel
    • 1
  1. 1.Institut de MathématiqueUniversité Louis PasteurStrasbourg Cedex

Personalised recommendations