A strong approximation of partial sums of i.i.d. Random variables with infinite variance

  • Joop Mijnheer


Stochastic Process Probability Theory Mathematical Biology Strong Approximation Infinite Variance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Billingsley, P.: Convergence of probability measures. New York: Wiley 1968Google Scholar
  2. Breiman, L.: Probability. Reading (Mass): Addison-Wesley 1968Google Scholar
  3. Feller, W.: A limit theorem for random variables with infinite moments. Amer. J. Math. 68, 257–262 (1946)Google Scholar
  4. Feller, W.: An extension of the law of the iterated logarithm to variables without variance. J. Math. Mech. 18, 343–355 (1968)Google Scholar
  5. Feller, W.: An introduction to probability theory and its applications. Vol. II. Second edition. New York: Wiley 1971Google Scholar
  6. Kostka, D.G.: Deviations in the Skorohod-Strassen Approximation Scheme. Z. Wahrscheinlichkeitstheorie verw. Gebiete 24, 139–153 (1972)Google Scholar
  7. Major, P.: An improvement of Strassen's invariance principle. Ann. Probability 7, 55–61 (1979)Google Scholar
  8. Mijnheer, J.L.: Sample path properties of stable processes. Math. Centre tracts 59. Amsterdam: Mathematisch Centrum 1975Google Scholar
  9. Sawyer, S.: The Skorokhod representation. The Rocky Mountain Journal of Mathematics 4, 579–596 (1974)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Joop Mijnheer
    • 1
  1. 1.Department of MathematicsUniversity of LeidenRA LeidenThe Netherlands

Personalised recommendations