A generalization of Strassen's functional law of iterated logarithm

  • P. Révész


Let {aT; T≧0} be a non-decreasing function of T with 0<aTT and let {W(t); t≧0} be a Wiener process. The limit functions of the processes
$$\Gamma _{t,T} (x) = \beta _T (W(t + xa_T ) - W(t)) (0\underline \leqslant x \underline \leqslant 1)$$
where 0≦tT−aT, T>0 and
$$\beta _T = (2a_T (\log Ta_T^{ - 1} + \log \log T))^{ - \tfrac{1}{2}} $$
are characterized. In the case aT=T Strassen's law is obtained as a special case.


Stochastic Process Probability Theory Mathematical Biology Limit Function Wiener Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Csörgö, M., Révész, P.: How big are the increments of a Wiener process? Ann. Probability 7, (1979)Google Scholar
  2. Csörgö, M., Révész, P.: How big are the increments of a multiparameter Wiener process? Z. Wahrscheinlichkeitstheorie verw. Gebiete 42, 1–12 (1978)Google Scholar
  3. Qualls, P., Watanabe, H.: Asymptotic properties of Gaussian processes. Ann. Math. Statist. 43, 580–596 (1972)Google Scholar
  4. Slepian, P.: The one-sided barrier problem for Gaussian noise. Bell. System Tech. J. 41, 463–501 (1962)Google Scholar
  5. Chan, A.H.C., Csörgö, M., Révész, P.: Strassen type limit points for moving averages of a Wiener process. The Canad. J. Statist. 6, 57–75 (1978)Google Scholar
  6. Strassen, V.: An invariance principle for the law of iterated logarithm. Z. Wahrscheinlichkeitstheorie verw. Gebiete 3, 211–226 (1964)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • P. Révész
    • 1
  1. 1.Mathematical Institute of the Hungarian Academy of SciencesBudapest VHungary

Personalised recommendations