The student t-distribution of any degree of freedom is infinitely divisible

  • E. Grosswald


Stochastic Process Probability Theory Mathematical Biology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramovitz, M., Segun, I. A.: Handbook of mathematical functions. New York: Dover 1968Google Scholar
  2. 2.
    Burchnall, J. L.: The Bessel polynomials. Canad. J. Math. 31, 62–68 (1951)Google Scholar
  3. 3.
    Grosswald, E.: The Student t-distribution of an odd number of degrees of freedom is infinitely divisible (to appear)Google Scholar
  4. 4.
    Ismail, M. E. H., Kelker, D. H.: The Bessel polynomials and the student t-distribution. Siam J. Math. Anal. 7, 82–91 (1976); see also the Abstract in the Notices of the A.M.S. 22, A-151 (1975)Google Scholar
  5. 5.
    Kelker, D. H.: Infinite divisibility and various mixtures of the normal distribution. Ann. Math. Statist. 42, 802–808 (1971)Google Scholar
  6. 6.
    Watson, G. N.: A treatise on the theory of Bessel functions. Second Edition. Cambridge: University Press 1962Google Scholar
  7. 7.
    Widder, D. V.: The Laplace transform. Princeton: University Press 1946Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • E. Grosswald
    • 1
  1. 1.Department of MathematicsTemple UniversityPhiladelphiaUSA

Personalised recommendations