On the existence and unicity of solutions of stochastic integral equations

  • Catherine Doléans-Dade


Let M be a local martingale, A be an adapted process with finite variation on each finite interval and H be an adapted cadlag process (i.e. H is continuous on the right and has finite left limits). We shall prove that the equation
$$X_t = H_t + \int\limits_0^t {f(s,X_{s - } )dM_s + } \int\limits_0^t {g(s,X_{s - } )dA_s }$$
has one and only one solution, provided the random functions f and g satisfy the properties (L) given below, i.e. a Lipschitz condition
$$|g(s,\omega ,x) - g(s,\omega ,y)| + |f(s,\omega ,x) - f(s,\omega ,y)|\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{ \leqslant } K|x - y|,$$
and two less stringent properties.

Results of this kind were proved recently by Kazamaki (3) and Protter (7) under much more restrictive continuity conditions on M and A.


Integral Equation Stochastic Process Probability Theory Mathematical Biology Continuity Condition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dellacherie, C.: Capacités et Processus Stochastiques. Berlin-Heidelberg-New York: Springer 1972Google Scholar
  2. 2.
    Doléans-Dade, C., Meyer, P. A.: Intégrales Stochastiques par rapport aux martingales locales. Lecture Notes in Math. 124, p. 77–107. Berlin-Heidelberg-New York: Springer 1970Google Scholar
  3. 3.
    Kazamaki, N.: On a stochastic Integral Equation with respect to a Weak martingale. TÔhoku Math. J. 26, 53–63 (1974)Google Scholar
  4. 4.
    Gihman, I. I., Skorohod, A. V.: Stochastic Differential Equations. Berlin-Heidelberg-New York: Springer 1972Google Scholar
  5. 5.
    McKean, Jr., H. P.: Stochastic Integrals. New York: Academic Press 1969Google Scholar
  6. 6.
    Meyer, P. A.: Probabilités et Potentiel. Paris: Hermann 1966Google Scholar
  7. 7.
    Protter, P. E.: On the Existence, Uniqueness, Convergence, and Explosions of solutions of Systems of Stochastic Integral Equations [to appear]Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Catherine Doléans-Dade
    • 1
  1. 1.Department of MathematicsUniversity of Illinois UrbanaUSA

Personalised recommendations