Ingenieur-Archiv

, Volume 56, Issue 6, pp 407–416 | Cite as

Application of the method of initial functions for the analysis of composite laminated plates

  • K. T. S. Iyengar
  • S. K. Pandya
Originals

Summary

The method of initial functions has been applied for deriving higher order theories for cross-ply laminated composite thick rectangular plates. The equations of three-dimensional elasticity have been used. No a priori assumptions regarding the distribution of stresses or displacements are needed. Numerical solutions of the governing equations have been presented for simply supported edges and the results are compared with available ones.

Anwendung der Methode der Anfangsfunktionen auf die Analyse von Verbundschichtplatten

Übersicht

Die Methode der Anfangsfunktionen wird angewendet, um Theorien höherer Ordnung für dicke, rechteckige, kreuzweise geschichtete Verbundplatten abzuleiten. Dabei werden die dreidimensionalen Elastizitätsgleichungen verwendet. Keine àpriori-Annahmen sind nötig bezüglich der Verteilung der Spannungen und Verschiebungen. Numerische Lösungen der bestimmenden Gleichungen werden vorgestellt für einfach unterstützte Kanten, und die Ergebnisse werden mit den in der Literatur vorhandenen Daten verglichen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vlasov, V. Z.: The method of initial functions in problems of the theory of thick plates and shells. Proc. of the Ninth Int. Congr. of Applied Mechanics, pp. 321–330. Brussels 1957Google Scholar
  2. 2.
    Sundara Raja Iyengar, K. T.; Chandrashekhara, K.; Sebastian, V. K.: On the analysis of thick rectangular plates. Ing. Arch. 43 (1974) 317–330Google Scholar
  3. 3.
    Sundara Raja Iyengar, K. T.; Raman, P. V.: Free vibration of rectangular plates of arbitrary thickness. J. Sound Vib. 54 (1977) 229–236Google Scholar
  4. 4.
    Sundara Raja Iyengar, K. T.; Raman, P. V.: Free vibrations of rectangular plates of arbitrary thickness with one or more edges clamped. J. Sound Vib. 71 (1980) 463–472Google Scholar
  5. 5.
    Sundara Raja Iyengar, K. T.; Pandya, S. K.: Analysis of orthotropic rectangular thick plates. Fibre Sci. Technol. 18 (1983) 19–36Google Scholar
  6. 6.
    Sundara Raja Iyengar, K. T.; Pandya, S. K.: Vibrations of orthotropic rectangular thick plates. Int. J. Struct. 2 (1982) 149–156Google Scholar
  7. 7.
    Whitney, J. M.; Leissa, A. W.: Analysis of heterogeneous anisotropic plates. J. Appl. Mech. 36 (1969) 261–266Google Scholar
  8. 8.
    Whitney, J. M.: The effect of transverse shear deformation on the bending of laminated plates. J. Compos. Mater. 3 (1969) 534–547Google Scholar
  9. 9.
    Whitney, J. M.; Pagano, N. J.: Shear deformation in heterogeneous anisotropic plates. J. Appl. Mech. 37 (1970) 1031–1036Google Scholar
  10. 10.
    Reddy, J. N.; Chao, W. C.: A comparison of closed form and finite element solutions of thick laminated anisotropic plates. Nucl. Eng. Des. 64 (1981) 153–167Google Scholar
  11. 11.
    Murthy, M. V. V.: An improved transverse shear deformation theory for laminated anisotropic plates. NASA Technical Paper 1903, 1981Google Scholar
  12. 12.
    Pagano, N. J.: Exact solutions for rectangular bidirectional composites and sandwich plates. J. Compos. Mater. 4 (1970) 20–34Google Scholar
  13. 13.
    Panda, S. C.; Natarajan, R.: Finite element analysis of laminated composite plates. Int. J. Numer. Methods Eng. 14 (1979) 69–79Google Scholar
  14. 14.
    Jones, R. M.: Buckling and vibration of unsymmetrically laminated cross-ply rectangular plates. J. AIAA 11 (1973) 1626–1632Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • K. T. S. Iyengar
    • 1
  • S. K. Pandya
    • 2
  1. 1.Department of Civil EngineeringIndian Institute of ScienceBangaloreIndia
  2. 2.Government Engineering CollegeJabalpurIndia

Personalised recommendations