Some functional limit theorems for multidimensional random walks

  • R. P. Pakshirajan
  • N. R. Mohan


Stochastic Process Probability Theory Limit Theorem Mathematical Biology Functional Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Billingsley, P.: Convergence of probability measures. New York: Wiley 1968Google Scholar
  2. 2.
    Gihman, I.I., Skorohod, A.V.: Theory of random processes, Vol. I. Berlin-Heidelberg-New York: Springer 1971Google Scholar
  3. 3.
    Gut, A.: Weak convergence and first passage times. J. Appl. Probability 12, 324–332 (1975)Google Scholar
  4. 4.
    Hunter, J.J.: Renewal theory in two dimensions: Asymptotic results. Advances in Appl. Probability 6, 546–562 (1974)Google Scholar
  5. 5.
    Iglehart, D.L.: Weak convergence of compound stochastic processes, I. Stochastic Processes Appl. 1, 11–31 (1973)Google Scholar
  6. 6.
    Kennedy, D.P.: A functional central limit theorem for k-dimensional renewal theory. Ann. Math. Statist. 42, 376–380 (1971)Google Scholar
  7. 7.
    Rvaceva, E.L.: On domains of attraction of multidimensional distributions. Select. Transi. Math. Statist. Probab. 2, 183–205 (1962)Google Scholar
  8. 8.
    Skorohod, A.V.: Limit theorems for stochastic processes. Theor. Probability Appl. 1, 261–290 (1956)Google Scholar
  9. 9.
    Skorohod, A.V.: Limit theorems for stochastic processes with independent increments. Theor. Probability Appl. 2, 138–171 (1957)Google Scholar
  10. 10.
    Whitt, W.: Continuity of several functions on the function space D. Technical reports. Yale University (1974)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • R. P. Pakshirajan
    • 1
  • N. R. Mohan
    • 1
  1. 1.Department of StatisticsUniversity of MysoreMysoreIndia

Personalised recommendations