, Volume 54, Issue 2, pp 91–97 | Cite as

The application of green's multi-dimensional function to investigate the stochastic vibrations of dynamical systems

  • W. Pękała
  • J. Szopa


In the paper is presented the application of Green's multi-dimensional function to determine the probabilistic characteristics of the solutions of stochastic linear equations with time-variable coefficients, with random initial conditions and random excitations.

The method is applied to calculate the variances of solutions for the vibrations of a vehicle model (or suspension) accelerated over a random profile.


Neural Network Dynamical System Complex System Linear Equation Information Theory 

Anwendung der Greenschen Funktion zur Untersuchung von stochastischen Schwingungen dynamischer Systeme


Die Greensche Funktion wird angewendet zur Ermittlung des Lösungsverhaltens stochastischer, linearer Differentialgleichungen mit zeitabhängigen Koeffizienten, mit Zufalls-Anfangsbedingungen und mit Zufalls-Erregung. Die Methode wird in einem Anwendungsbeispiel (Schwingungen eines beschleunigten Fahrzeugmodells) demonstriert.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adomian, G.: Random operator equations in mathematical physics. J. Math. Phys. 11 (1970) 1069–1084, 12 (1971) 1944–1946, 1948–1955Google Scholar
  2. 2.
    Beyn, W.-J.: Die Konvergenz der diskreten Greenschen Funktionen beim gewöhnlichen Differenzenverfahren. Z. Angew. Math. Mech. 59 (1979) T 47-T 49Google Scholar
  3. 3.
    Bharucha-Reid, A. T.: Random integral equations. New York, London: Academic Press 1972Google Scholar
  4. 4.
    Kreuzer, E.; Rill, G.: Vergleichende Untersuchung von Fahrzeugschwingungen an räumlichen Ersatzmodellen. Ing.-Arch. 52 (1982) 205–219Google Scholar
  5. 5.
    Langer, J.: The parasitical damping in computer solutions of equations of movement. Arch. Land Eng. 25 (1979) 359–368 (in Polish)Google Scholar
  6. 6.
    Macvean, D. B.: Response of vehicle accelerating over random profile. Ing.-Arch. 49 (1980) 375–380Google Scholar
  7. 7.
    Masri, S. F.: Response of a multidegree-of-freedom system to nonstationary random excitation. J. Appl. Mech. 45 (1978) 649–656Google Scholar
  8. 8.
    Matveev, N. M.: The methods of integration the ordinary differential equations. Moscow: Higher School 1963 (in Russian)Google Scholar
  9. 9.
    Müller, P. C.; Popp, K.: Kovarianzanalyse von linearen Zufallsschwingungen mit zeitlich verschobenen Erregerprozessen. Z. Angew. Math. Mech. 59 (1979) T 144-T 146Google Scholar
  10. 10.
    Müller, P. C.; Popp, K.; Schiehlen, W. O.: Berechnungsverfahren für stochastische Fahrzeugeschwingungen. Ing.-Arch. 49 (1980) 235–254Google Scholar
  11. 11.
    Müller, P. C.; Schiehlen, W. O.: Forced linear vibrations. CISM Vol. 172. Berlin, Heidelberg, New York: Springer 1973Google Scholar
  12. 12.
    Newmark, N.: A method of computation for structural dynamics. J. Eng. Mech. Div., ASCE Vol. EM 3 (1959)Google Scholar
  13. 13.
    Pękała, W.: RANGREENV — The system of problems for calculation the probabilistic characteristics of linear stochastic systems of variable parameters. IX. Sympozium “The vibrations in physical systems”, Poznań-Błazejewko 1980 (in Polish)Google Scholar
  14. 14.
    Pękała, W.; Szopa, J.: The numerical investigations of stochastic vibrations of multi-degree-of-freedom vehicle models. Proceedings of VI. Conference on Computer Methods in Mechanics of Structures. Białystok, 1983 (in Polish)Google Scholar
  15. 15.
    Pękała, W.; Szopa, J.: The vibrations of double pendulum with length and mass changing under stochastic excitation. Zeszyty Nauk. Polit. Sl. Mathematics-Physics (in Polish) [in print]Google Scholar
  16. 16.
    Pokojski, J.: Polyoptimization of linear vibration system of two-degree-of-freedom under stochastic excitation. Proceedings of III. Conference on Methods and Means of Automatic Design, Warsaw 19–21 November 1981 189–196 (in Polish)Google Scholar
  17. 17.
    Rill, G.: Discussion related to the paper of D. B. Macvean: Response of vehicle accelerating over random profile in Ing.-Arch. 49 (1980) 375–380; Ing.-Arch. 52 (1982) 91–94Google Scholar
  18. 18.
    Rill, G.: Grenzen der Kovarianzanalyse bei weißem Geschwindigkeitsrauschen. Z. Angew. Math. Mech. 62 (1982) T 70-T 72Google Scholar
  19. 19.
    Sakata, M.; Kimura, K.: The use of moment equations for calculating the mean square response of a linear system to nonstationary random excitation. J. Sound Vib. 67 (1979) 383–392Google Scholar
  20. 20.
    Skalmierski, B.; Tylikowski, A.: Stochastic processes in dynamics, Warsaw: PWN 1972 (in Polish)Google Scholar
  21. 21.
    Sobczyk, K.: Methods of statistical dynamics, Warsaw: PWN 1973 (in Polish)Google Scholar
  22. 22.
    Sobczyk, K.; Macvean, D. B.: Non-stationary random vibrations of road vehicle with variable velocity. Symposium on Stochastic Problems in Dynamics, University of Southampton, U.K., July 19th to 23 rd, 1976, 21.1–21.6Google Scholar
  23. 23.
    Sobczyk, K.; Macvean, D. B.; Robson, J. D.: Response to profile — imposed excitation with randomly varying traversal velocity. J. Sound Vib. 52 (1977) 37–49Google Scholar
  24. 24.
    Solodov, A. V.; Petrov, F. S.: Linear automatic systems with variable parameters. Moskwa: Izd. Nauka 1971 (in Russian)Google Scholar
  25. 25.
    Szopa, J.: Application of Volterra stochastic integral equations of the II-nd kind to the analysis of dynamic systems of variable inertia. J. Techn. Phys. 17 (1976) 423–433Google Scholar
  26. 26.
    Szopa, J.: Response of a multidegree-of-freedom system of variable coefficients to random excitation. Z. Angew. Math. Mech. 62 (1982) 321–328Google Scholar
  27. 27.
    Szopa, J.; Wojtylak, M.: Numerical problems of determining probabilistic characteristics of solutions in stochastic nonlinear dynamic systems of variable inertia. Mech. Computer 4 (1981) 405–417 (in Polish)Google Scholar
  28. 28.
    Szopa, J.; Wojtylak, M.: On determination of probabilistic characteristics of solutions of double pendulum with varying length subject to random forcing. Theor. Appl. Mech. 17 (1979) 237–245 (in Polish)Google Scholar
  29. 29.
    Tsokos, Ch. P.: On a stochastic integral equation of the Volterra type. Math. Systems Theory 3 (1969) 222–231Google Scholar
  30. 30.
    Tsokos, Ch. P.; Padgett, W. J.: Random integral equations with applications to stochastic systems. Berlin, Heidelberg, New York: Springer 1971.Google Scholar
  31. 31.
    Wicher, J.: The phenomenon of dynamic damping in a system being under random excitation. IFTR Raports 32 (1974) Warsaw (in Polish)Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • W. Pękała
    • 1
  • J. Szopa
    • 2
  1. 1.The Centre of Research and Development of Machines (OBRUM)GliwicePoland
  2. 2.Institute of Theoretical MechanicsSilesian Technical UniversityGliwicePoland

Personalised recommendations