Canonical and microcanonical Gibbs states

  • Chris Preston


The grand canonical Gibbs states for a system from classical statistical mechanics can be defined as the probability measures on an appropriate phase space which have certain specified conditional probabilities. These conditional probabilities are with respect to a family of σ-algebras associated with subsets of the space in which the system lies. If different families of σ-algebras are used then canonical and microcanonical Gibbs states are obtained. The relationship between these different Gibbs states is studied and, subject to various conditions, it is shown that each canonical and microcanonical Gibbs state can be written as a convex mixture of grand canonical Gibbs states.


Phase Space Stochastic Process Probability Measure Probability Theory Conditional Probability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aizenmann, M., Goldstein, S., Lebowitz, J.L.: Microcanonical Gibbs states. Preprint 1976Google Scholar
  2. Aizenmann, M., Goldstein, S., Lebowitz, J.L.: Conditional equilibrium and the equivalence of microcanonical and grandcanonical ensembles in the thermodynamic limit. Comm. Math. Phys. 62, 279–302 (1978)Google Scholar
  3. Breiman, L.: Probability. Reading, Mass: Addison-Wesley 1968Google Scholar
  4. deFinetti, B.: Funzione caratteristica di un fenomeno aleatorio, Atti dell R. Academica Nazionale dei Lincei, Ser. 6, Memorie, Classe di Scienze Fisiche, Mathematishe e Naturali, Vol. 4, 251–300 (1931)Google Scholar
  5. Dobrushin, R.L.: Description of a random field by means of conditional probabilities and the conditions governing its regularity. Theor. Probability App. 13, 197–224 (1968a)Google Scholar
  6. Dobrushin, R.L.: Gibbsian random fields for lattice systems with pairwise interactions. Functional Anal. Appl. 2, 292–301 (1968b)Google Scholar
  7. Dobrushin, R.L.: The problem of uniqueness of a Gibbsian random field and the problem of phase transition. Functional Anal. Appl. 2, 302–312 (1968c)Google Scholar
  8. Dobrushin, R.L.: Gibbsian random fields. The general case. Functional Anal. Appl. 3, 22–28 (1969)Google Scholar
  9. Föllmer, H.: Phase transition and Martin boundary. Sém. Probabilités Strasbourg, IX. Lecture Notes in Math. Vol. 465. Berlin-Heidelberg-New York: Springer 1975Google Scholar
  10. Föllmer, H.: On the potential theory of stochastic fields. Invited address: 40th. Session ISI, Warsaw, Poland (1975)Google Scholar
  11. Georgii, H.-O.: Canonical Gibbs states, their relation to Gibbs states, and applications to twovalued Markov chains. Z. Wahrscheinlichkeitstheorie verw. Gebiete 32, 272–300 (1975)Google Scholar
  12. Georgii, H.-O.: On canonical Gibbs states, symmetric and tail fields. Z. Wahrscheinlichkeitstheorie verw. Gebiete 33, 331–342 (1976)Google Scholar
  13. Georgii, H.-O.: Canonical and grand canonical Gibbs states for continuum systems. Comm. Math. Phys. 48, 31–51 (1976b)Google Scholar
  14. Georgii, H.-O.: Kanonische Gibbsmaße. Habilitationsarbeit, Universität Heidelberg 1978Google Scholar
  15. Hewitt, E., Savage, L.J.: Symmetric measures on cartesian products. Trans Amer. Math. Soc., 80, 470–501 (1955)Google Scholar
  16. Lanford, O.E., Ruelle, D.: Observables at infinity and states with short range correlations in statistical mechanics. Comm. Math. Phys. 13, 194–215 (1969)Google Scholar
  17. Logan, K.G.: Time reversible evolutions in statistical mechanics. Thesis: Cornell University, Ithaca, New York 1974Google Scholar
  18. Martin-Löf, A.: The equivalence of ensembles and Gibbs phase rule for classical lattice systems. J. Statist. Phys. [to appear] (1978)Google Scholar
  19. Martin-Löf, P.: Repetitive structures and the relation between canonical and microcanonical distributions in statistics and statistical mechanics. Proceedings of a Conference on foundational questions in Statistical Inference, Memoirs No. 1, 271–293. Dept. Theoret. Statist., Inst. Math. Univ. Aarhus (1974)Google Scholar
  20. Nguyen, X.X., Zessin, H.: Martin-Dynkin boundary of mixed Poisson processes. Z. Wahrscheinlichkeitstheorie verw. Gebiete 37, 191–200 (1977)Google Scholar
  21. Papangelou, F.: The conditional intensity of general point processes and an application to line processes. Z. Wahrscheinlichkeitstheorie verw. Gebiete 28, 207–226 (1974)Google Scholar
  22. Pitman, J.: An extension of de Finetti's theorem. Proceedings of the 7th. Conference on Stochastic Processes and Applications, Advances in Appl. Probability 10, 268–270 (1978)Google Scholar
  23. Preston, C.J.: Random fields. Lecture Notes in Mathematics Vol. 534. Berlin-Heidelberg-New York: Springer 1976Google Scholar
  24. Ruelle, D.: Superstable interactions in statistical mechanics. Comm. Math. Phys. 18, 127–159 (1970)Google Scholar
  25. Shiga, T.: Some problems related to Gibbs states, canonical Gibbs states, and Markovian time evolutions. Z. Wahrscheinlichkeitstheorie verw. Gebiete 34, 339–352 (1977)Google Scholar
  26. Thompson, R.L.: Equilibrium states on thin energy shells. Mem. Amer. Math. Soc. 150 (1974)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Chris Preston
    • 1
  1. 1.Fakultät für MathematikUniversität BielefeldBielefeld 1

Personalised recommendations