Advertisement

The conditional intensity of general point processes and an application to line processes

  • F. Papangelou
Article

Keywords

Stochastic Process Probability Theory Mathematical Biology Point Process General Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Davidson, R.: Some arithmetic and geometry in probability theory, Ph. D. thesis, University of Cambridge, 1968. To be reprinted in the memorial volume “Stochastic Geometry”. Edited by E. F. Harding and D. G. Kendall. New York: Wiley 1974Google Scholar
  2. 2.
    Davidson, R.: Construction of line processes: second order properties. Izv. Akad. Nauk Armjan. SSR Ser. Mat. 5, 219–234 (1970)Google Scholar
  3. 3.
    Kingman, J. F. C.: On doubly stochastic Poisson processes. Proc. Cambridge Philos. Soc. 60, 923–930 (1964)Google Scholar
  4. 4.
    Krickeberg, K.: The Cox process. Sympos. Math., Roma 9, Calcolo Probab., Teor. Turbolenza 1971, 151–167 (1972)Google Scholar
  5. 5.
    Krickeberg, K.: Moments of point processes. Lecture Notes in Mathematics 296, 70–101. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  6. 6.
    Mecke, J.: StationÄre zufÄllige Ma\e auf lokalkompakten Abelschen Gruppen. Z. Wahrschein-lichkeitstheorie verw. Geb. 9, 36–58 (1967)Google Scholar
  7. 7.
    Papangelou, F.: On the Palm probabilities of processes of points and processes of lines, to appear in the memorial volume “Stochastic Analysis and Geometry”. Edited by E. F. Harding and D. G. Kendall. New York: Wiley 1974Google Scholar
  8. 8.
    Papangelou, F.: Summary of some results on point and line processes. Stochastic point processes (editor P. A. W. Lewis), p. 522–532. New York: Wiley 1972Google Scholar
  9. 9.
    Papangelou, F.: Integrability of expected increments of point processes and a related random change of scale. Trans. Amer. Math. Soc. 165, 483–506 (1972)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • F. Papangelou
    • 1
  1. 1.Department of MathematicsThe UniversityManchesterUK

Personalised recommendations