An explicitly solvable model in “Euclidean” field theory: The Fixed Source

  • Abel Klein


Field Theory Stochastic Process Probability Theory Mathematical Biology Solvable Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albeverrio, S., Krohn, R. Hoegh: Uniqueness of the Physical Vacuum and the Wightman Functions in the Infinite Volume Limit for some Non-Polynomial Interactions. (Comm. Math. Phys. To appear)Google Scholar
  2. 2.
    Gel'fand, I.M., Vilenkin, N.Y.: Les Distributions. Tome 4, Paris: Dunod 1967Google Scholar
  3. 3.
    Glimm, J., Jaffe, A.: Positivity of theϕ 2 3 Hamiltonian. (Fortschr. Physik. To appear)Google Scholar
  4. 4.
    Glimm, J., Jaffe, A., Spencer, T.: The Wightman Axioms for the P(ϕ)2 Quantum Field Models. (Ann. of Math. To appear)Google Scholar
  5. 5.
    Guerra, F., Rosen, L., Simon, B.: The P(ϕ)2 Euclidean Quantum Field Theory as Classical Statistical Mechanics. (Ann. of Math. To appear)Google Scholar
  6. 6.
    Henley, E.M., Thirring, W.: Elementary Quantum Field Theory. New York: McGraw-Hill 1962Google Scholar
  7. 7.
    Nelson, E.: Quantum Fields and Markoff Fields. Proc. Summer Institute of Partial Differential Equations, Berkeley 1971. Providence: Amer. Math. Soc. 1973Google Scholar
  8. 8.
    Nelson, E.: Construction of Quantum Fields from Markoff Fields. J. Functional Analysis 12, 97–112 (1973)Google Scholar
  9. 9.
    Nelson, E.: The Free Markoff Field. J. Functional Analysis 12, 211–227 (1973)Google Scholar
  10. 10.
    Newman, C: The Construction of Stationary Two-Dimensional Markoff Fields with an Application to Quantum Field Theory. (J. Functional Analysis. To appear)Google Scholar
  11. 11.
    Osterwalder, K., Schrader, R.: Axioms for Euclidean Green's Functions. (Comm. Math. Phys. To appear)Google Scholar
  12. 12.
    Schwartz, L.: Théorie des Distributions. Paris: Hermann 1966Google Scholar
  13. 13.
    Schweber, S.: An Introduction to Relativistic Quantum Field Theory. New York: Harper and Row 1961Google Scholar
  14. 14.
    Segal, I.: Tensor Algebras over Hilbert Spaces I. Trans. Amer. Math. Soc, 81, 106–134 (1956)Google Scholar
  15. 15.
    Segal, I.: Distributions in Hilbert Spaces and Canonical Systems of Operators. Trans. Amer. Math. Soc., 88, 12–41 (1958)Google Scholar
  16. 16.
    Segal, I.: Algebraic Integration Theory, Bulletin Amer. Math. Soc., 71, 419–489 (1965)Google Scholar
  17. 17.
    Segal, I.: Nonlinear Functions of Weak Processes. 11. J. Functional Analysis 6, 29–75 (1970)Google Scholar
  18. 18.
    Segal, I.: Introduction to the Mathematical Theory of Quantum Fields. M.I.T. Lecture Notes in Math. Vol. 140, pp. 30–57. Berlin-Heidelberg-New York: 1971Google Scholar
  19. 19.
    Simon, B, Griffiths, R.: The (ϕ 4)2 Field Theory as a Classical Ising Model. (Comm. Math. Phys. To appear)Google Scholar
  20. 20.
    Symanzik, K.: Euclidean Quantum Field Theory I, Equations for a Scalar Model. J. Mathematical Phys. 7, 510–525 (1966)Google Scholar
  21. 21.
    Symanzik, K.: Euclidean Quantum Field Theory, in Local Quantum Theory. Proc. Internat. School Phys. Course 45, R. Jost, Editor. New York: Academic Press 1969Google Scholar
  22. 22.
    Wentzel, G.: Quantum Theory of Fields. New York: Interscience 1949Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Abel Klein
    • 1
  1. 1.Department of MathematicsPrinceton UniversityPrincetonUSA

Personalised recommendations