An information cocycle for groups of non-singular transformations

  • Roger Butler
  • Klaus Schmidt


In this paper we introduce an information cocycle for semigroups of non-singular endomorphisms of a Lebesgue space and discuss some of its properties.


Stochastic Process Probability Theory Mathematical Biology Lebesgue Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramov, L.M.: On the entropy of a flow. Am. Math. Soc. Transl. 49, 167–170 (1966) (=Dokl. Akad. Nauk. SSSR 128, 873–875 (1959))Google Scholar
  2. 2.
    Ambrose, W., Kakutani, S.: Structure and continuity of measurable flows. Duke Math. J. 9, 25–42 (1942)Google Scholar
  3. 3.
    Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Mathematics 470. Berlin-Heidelberg-New York: Springer 1975Google Scholar
  4. 4.
    Dye, H.A.: On groups of measure preserving transformations I. Am. J. Math. 81, 119–159 (1959)Google Scholar
  5. 5.
    Feldman, J., Moore, C.C.: Ergodic equivalence relations, cohomology and von Neumann algebras I. Trans. Am. Math. Soc. 234, 289–324 (1977)Google Scholar
  6. 6.
    Krieger, W.: On entropy and generators of measure preserving transformations. Trans. Am. Math. Soc. 149, 453–464 (1970). Erratum: 168, 512 (1972)Google Scholar
  7. 7.
    Krieger, W.: On the finitary isomorphisms of Markov shifts that have finite expected coding time. Z. Wahrscheinlichkeitstheorie Verw. Geb. 65, 323–328 (1983)Google Scholar
  8. 8.
    Martin, N.F.G., England, J.W.: Mathematical Theory of Entropy, Encyclopedia of Mathematics and its applications. Vol. 12. Reading, Mass.: Addison-Wesley 1981Google Scholar
  9. 9.
    Parry, W.: An ergodic theorem of information theory without invariant measure. Proc. London Math. Soc. (3), 13, 605–612 (1963)Google Scholar
  10. 10.
    Parry, W.: Entropy and generators in ergodic theory. New York: Benjamin 1969Google Scholar
  11. 11.
    Parry, W.: Endomorphisms of a Lebesgue space III. Israel J. Math. 21, 167–172 (1975)Google Scholar
  12. 12.
    Parry, W., Schmidt, K.: Natural coefficients and invariants for Markov shifts. Invent. math. 76, 15–32 (1984)Google Scholar
  13. 13.
    Pugh, C., Shub, M.: Ergodicity of Anosov actions. Invent. math. 15, 1–23 (1972)Google Scholar
  14. 14.
    Rohlin, V.A.: Lectures on the entropy theory of measure-preserving transformations. Russ. Math. Surv. 22, 1–52 (1967)Google Scholar
  15. 15.
    Rudolph, D.: A two-valued step coding for ergodic flows. Math. Z. 150, 201–220 (1976)Google Scholar
  16. 16.
    Schmidt, K.: Cocycles of ergodic transformation groups. New Delhi, India: MacMillan 1977Google Scholar
  17. 17.
    Schmidt, K.: Invariants for finitary isomorphisms with finite expected code lengths. Invent, math. 76, 33–40 (1984)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Roger Butler
    • 1
  • Klaus Schmidt
    • 2
  1. 1.Institute for Advanced StudySchool of MathematicsPrincetonUSA
  2. 2.Mathematics InstituteUniversity of WarwickCoventryUK

Personalised recommendations