Probabilistic metric spaces determined by measure preserving transformations

  • B. Schweizer
  • A. Sklar


Stochastic Process Probability Theory Mathematical Biology Measure Preserve Preserve Transformation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Billingsley, P.: Convergence of Probability Measures. New York: Wiley 1968.Google Scholar
  2. 2.
    Erber, T., Schweizer, B., Sklar, A.: Mixing transformations on metric spaces. Comm. Math. Phys. 29, 311–317 (1973).Google Scholar
  3. 3.
    Erber, T., Sklar, A.: Macroscopic irreversibility as a manifestation of micro-instabilities. In: Modern Developments in Thermodynamics, B. Gal-Or, ed. Jerusalem-New York: Israel Universities Press-Wiley 1973.Google Scholar
  4. 4.
    Halmos, P.R.: Lectures on Ergodic Theory. New York: Chelsea 1956.Google Scholar
  5. 5.
    Lebowitz, J.L., Penrose, O.: Modern ergodic theory. Physics Today 26, 23–29 (1973).Google Scholar
  6. 6.
    Loève, M.: Probability Theory. 3rd edn. Princeton: Van Nostrand 1963.Google Scholar
  7. 7.
    Schweizer, B., Sklar, A.: Statistical metric spaces. Pacific J. Math. 10, 313–334 (1960).Google Scholar
  8. 8.
    Sherwood, H.: On E-spaces and their relation to other classes of probabilistic metric spaces. J. London Math. Soc. 44, 441–448 (1969).Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • B. Schweizer
    • 1
  • A. Sklar
    • 2
  1. 1.Department of MathematicsUniversity of MassachusettsAmherstUSA
  2. 2.Department of MathematicsIllinois Institute of TechnologyChicagoUSA

Personalised recommendations