Probabilistic metric spaces determined by measure preserving transformations

  • B. Schweizer
  • A. Sklar


Stochastic Process Probability Theory Mathematical Biology Measure Preserve Preserve Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Billingsley, P.: Convergence of Probability Measures. New York: Wiley 1968.Google Scholar
  2. 2.
    Erber, T., Schweizer, B., Sklar, A.: Mixing transformations on metric spaces. Comm. Math. Phys. 29, 311–317 (1973).Google Scholar
  3. 3.
    Erber, T., Sklar, A.: Macroscopic irreversibility as a manifestation of micro-instabilities. In: Modern Developments in Thermodynamics, B. Gal-Or, ed. Jerusalem-New York: Israel Universities Press-Wiley 1973.Google Scholar
  4. 4.
    Halmos, P.R.: Lectures on Ergodic Theory. New York: Chelsea 1956.Google Scholar
  5. 5.
    Lebowitz, J.L., Penrose, O.: Modern ergodic theory. Physics Today 26, 23–29 (1973).Google Scholar
  6. 6.
    Loève, M.: Probability Theory. 3rd edn. Princeton: Van Nostrand 1963.Google Scholar
  7. 7.
    Schweizer, B., Sklar, A.: Statistical metric spaces. Pacific J. Math. 10, 313–334 (1960).Google Scholar
  8. 8.
    Sherwood, H.: On E-spaces and their relation to other classes of probabilistic metric spaces. J. London Math. Soc. 44, 441–448 (1969).Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • B. Schweizer
    • 1
  • A. Sklar
    • 2
  1. 1.Department of MathematicsUniversity of MassachusettsAmherstUSA
  2. 2.Department of MathematicsIllinois Institute of TechnologyChicagoUSA

Personalised recommendations