On pointwise convergence, compactness and equicontinuity in the lifting topology. I

  • A. Ionescu Tulcea


Stochastic Process Probability Theory Mathematical Biology Pointwise Convergence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bourbaki, N.: Intégration. Paris: Hermann 1959–1968.Google Scholar
  2. 2.
    Dunford, N., Schwartz, J.T.: Linear operators. Part I. New York: Interscience 1958.Google Scholar
  3. 3.
    Ionescu Tulcea, A., Ionescu Tulcea, C.: Liftings for Abstract Valued Functions and Separable Stochastic Processes. Z. für Wahrscheinlichkeitstheorie verw. Gebiete 13, 114–118 (1969).Google Scholar
  4. 4.
    Ionescu Tulcea, A., Ionescu Tulcea, C.: Topics in the theory of lifting. Berlin-Heidelberg-New York: Springer 1969.Google Scholar
  5. 5.
    Meyer, P.A.: Représentation intégrale des fonctions excessives. Résultats de Mokobodski. Séminaire de Probabilités V, Université de Strasbourg, 196–208. Berlin-Heidelberg-New York: Springer 1971.Google Scholar
  6. 6.
    Phillips, R.S.: On weakly compact subsets of a Banach space. Amer. J. Math. 65, 108–136 (1943).Google Scholar
  7. 7.
    Moran, W.: Separate continuity and supports of measures. J. London Math. Soc. 44, 320–324 (1969).Google Scholar
  8. 8.
    Rosenthal, H. P.: On injective Banach spaces and the spaces L∞(Μ) for finite measures Μ. Acta Mathematica 124, 205–248 (1970).Google Scholar
  9. 9.
    Sion, M.: Group-valued outer measures, Actes Congrès. Intern. Math., 1970, Tome 2, 589–593.Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • A. Ionescu Tulcea
    • 1
  1. 1.Department of MathematicsNorthwestern UniversityEvanstonUSA

Personalised recommendations