Approximation of partial sums of i.i.d.r.v.s when the summands have only two moments

  • Péter Major


Stochastic Process Probability Theory Mathematical Biology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Heyde, C.C.: Some properties of metrics in a study on convergence to normality. Z. Wahrscheinlichkeitstheorie verw. Gebiete 11, 181–192 (1969)Google Scholar
  2. 2.
    Komlós, J., Major, P., Tusnády, G.: An approximation of Partial Sums of Independent RV's and the Sample D.F. (II). Z. Wahrscheinlichkeitstheorie verw. Gebiete 34, 33–58 (1976)Google Scholar
  3. 3.
    Major, P.: The approximation of partial sums of independent RV's. Z. Wahrscheinlichkeitstheorie verw. Gebiete 35, 213–220 (1976)Google Scholar
  4. 4.
    Loève, M.: Probability Theory. Toronto-New York-London: Van Nostrand 1963Google Scholar
  5. 5.
    Strassen, V.: An invariance principle for the law of iterated logarithm. Z. Wahrscheinlichkeitstheorie verw. Gebiete 3, 211–226 (1964)Google Scholar
  6. 6.
    Wichura, M.J.: Inequalities with application to weak convergence of random processes with multi-dimensional time parameters. Ann. Math. Statist. 40, 681–687 (1969)Google Scholar
  7. 7.
    Wichura, M.J.: Some Strassen type laws of the iterated logarithm for multiparameter stochastic processes. Ann. Probab. 1, 272–296 (1973)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Péter Major
    • 1
  1. 1.Mathematical Institute of the Hungarian Academy of SciencesBudapestHungary

Personalised recommendations