Advertisement

Infinitely subadditive capacities as upper envelopes of measures

  • Bernd Anger
  • Jörn Lembcke
Article

Keywords

Stochastic Process Probability Theory Mathematical Biology Subadditive Capacity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adamski, W.: Capacitylike set functions and upper envelopes of measures. Math. Ann. 229, 237–244 (1977)Google Scholar
  2. 2.
    Anger, B.: Approximation of capacities by measures. Lecture Notes in Mathematics 226, 152–170. Berlin, Heidelberg, New York: Springer 1971Google Scholar
  3. 3.
    Anger, B.: Kapazitäten und obere Einhüllende von Maßen. Math. Ann. 199, 115–130 (1972)Google Scholar
  4. 4.
    Anger, B.: Representation of capacities. Math. Ann. 229, 245–258 (1977)Google Scholar
  5. 5.
    Bourbaki, N.: Topologie générale, chap. 5–10 (nouv. éd.). Paris: Hermann 1974Google Scholar
  6. 6.
    Choquet, G.: Theory of capacities. Ann. Inst. Fourier 5, 131–295 (1953/54)Google Scholar
  7. 7.
    Davies, R.O., C.A. Rogers: The problem of subsets of finite positive measure. Bull. London Math. Soc. 1, 47–54 (1969)Google Scholar
  8. 8.
    Dellacherie, C.: Quelques commentaires sur les prolongements de capacités. Lecture Notes in Mathematics 191, 77–81. Berlin, Heidelberg, New York: Springer 1971Google Scholar
  9. 9.
    Dellacherie, C.: Ensembles analytiques, capacités, measures de Hausdorff. Lecture Notes in Mathematics 295. Berlin, Heidelberg, New York: Springer 1972Google Scholar
  10. 10.
    Dellacherie, C.: Capacités et processus stochastiques. Berlin, Heidelberg, New York: Springer 1972Google Scholar
  11. 11.
    Dellacherie, C., P.A. Meyer: Probabilités et potentiel. Paris: Hermann 1975Google Scholar
  12. 12.
    Fuglede, B.: Capacity as a sublinear functional generalizing an integral. Danske Vid. Selsk. Mat.-Fys. Medd. 38, 7 (1971)Google Scholar
  13. 13.
    Gänssler, P.: Compactness and sequential compactness in spaces of measures. Z. Wahrscheinlichkeitstheorie verw. Gebiete 17, 124–146 (1971)Google Scholar
  14. 14.
    Huber, P.J.: Kapazitäten statt Wahrscheinlichkeiten? Gedanken zur Grundlegung der Statistik. J.-ber. Deutsch. Math.-Verein. 78, 81–92 (1976)Google Scholar
  15. 15.
    Huber, P.J., V. Strassen: Minimax tests and the Neyman-Pearson lemma for capacities. Ann. of Statist. 1, 251–263 (1973)Google Scholar
  16. 16.
    Hummitzsch, W.: Ungünstigste Verteilungen und Approximation von Minimax-Tests. Diss. U. Bochum (1978)Google Scholar
  17. 17.
    Lembcke, J.: Gemeinsame Urbilder endlich additiver Inhalte. Math. Ann. 198, 239–258 (1972)Google Scholar
  18. 18.
    Lembcke, J.: Reguläre Maße mit einer gegebenen Familie von Bildmaßen. Sitz.-Ber., Math.-Naturw. Kl. Bayer. Akad. Wiss. 1976, 61–115 (1977)Google Scholar
  19. 19.
    Lembcke, J.: A set function without σ-additive extension having finitely additive extensions arbitrarily close to σ-additivity. Czechosl. Math. J. 30, 376–381 (1980)Google Scholar
  20. 20.
    Strassen, V.: Meßfehler und Information. Z. Wahrscheinlichkeitstheorie verw. Gebiete 2, 273–305 (1964)Google Scholar
  21. 21.
    Terkelsen, F.: Some minimax theorems. Math. Scand. 31, 405–413 (1972)Google Scholar
  22. 22.
    Topsøe, F.: Topology and measure. Lecture Notes in Mathematics 133. Berlin, Heidelberg, New York: Springer 1970Google Scholar
  23. 23.
    Topsøe, F.: Compactness in spaces of measures. Studia Math. 36, 195–212 (1970)Google Scholar
  24. 24.
    Topsøe, F.: On construction of measures. Proc. Conf. Topology and Measure I (2), Zinnowitz 1974, 343–381. Greifswald: 1978Google Scholar
  25. 25.
    Varadarajan, V.S.: Measures on topological spaces. Amer. Math. Soc. Transl. 48 (Ser. 2), 161–228 (1965)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Bernd Anger
    • 1
  • Jörn Lembcke
    • 1
  1. 1.Mathematisches Institut der Universität Erlangen-NürnbergErlangenFederal Republic of Germany

Personalised recommendations