Entropy of conservative transformations

  • Ulrich Krengel


The definition of entropy of a measure-preserving transformation (called: endomorphism) of a finite measure space into itself makes no sense for σ-finite measure spaces. Using induced transformations (introduced by Kakutani [1]) we give a definition which applies to conservative endomorphisms in σ-finite measure spaces. (This covers all cases of interest, since dissipative endomorphisms have a rather simple structure.) A theorem of Abramov [2] implies that for finite measure spaces the new definition is equivalent to the old one. Entropy as a metric invariant of conservative transformations has many, but not all of the properties discovered by Kolmogorov, Sinai, Rokhlin and others in the finite case. Major differences between the finite and the σ-finite case occur in the investigation of transformations with entropy 0.

After giving the basic definitions in section 1 we first prove a theorem on antiperiodic transformations, which will be needed in all other sections, unless the reader is willing to assume that all transformations are ergodic. In section 3 we define entropy and prove a theorem which permits its computation. As an example the entropy of the Markov shift for null-recurrent Markov chains is computed in section 4. We then investigate simple properties such as h(T n )=nh(T) (section 5) and give the ergodic decomposition of h(T) in section 6. Section 7 is devoted to the investigation of transformations with entropy zero, especially an example is given which shows that a known necessary and sufficient condition for a transformation with finite invariant measure to have entropy zero is not sufficient for transformations with a σ-finite invariant measure unless they satisfy an additional assumption. Finally section 8 is devoted to the proof of category statements about the set of conservative transformations and the subset of those among them which have entropy zero.


Entropy Markov Chain Invariant Measure Mathematical Biology Additional Assumption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Kakutani, S.: Induced measure-preserving transformations. Proc. Imp. Acad. Sci. Tokyo 19, 635–641 (1943).Google Scholar
  2. [2]
    Abramov, L. M.: The entropy of a derived automorphism. Doklady Akad. Nauk SSSR, n. Ser. 128, 647–650 (1959) (Russian).Google Scholar
  3. [3]
    Kolmogorov, A. N.: A new metric invariant of transitive dynamical systems and automorphisms of Lebesgue-spaces. Doklady Akad. Nauk SSSR, n. Ser. 119, 861–864 (1958) (Russian).Google Scholar
  4. [4]
    —: On the entropy per unit time as a metric invariant of automorphisms. Doklady Akad. Nauk SSSR, n. Ser. 124, 754–755 (1959) (Russian).Google Scholar
  5. [5]
    Helmberg, G.: über die Zerlegung einer me\baren Transformation in konservative und dissipative Bestandteile. Math. Z. 88, 358–367 (1965).Google Scholar
  6. [6]
    —: über rein dissipative Transformationen. Math. Z. 90, 41–53 (1965).Google Scholar
  7. [7]
    Sucheston, L.: A note on conservative transformations and the recurrence theorem. Amer. J. Math. 79, 444–447 (1957).Google Scholar
  8. [8]
    Halmos, P. R.: Invariant measures. Ann. of Math., II. Ser. 48, 735–754 (1947).Google Scholar
  9. [9]
    Scheller, H.: Induzierte dynamische Systeme. Diplomarbeit der Mathematisch-Naturwissenschaftlichen FakultÄt der UniversitÄt Göttingen, 62 pages (1965).Google Scholar
  10. [10]
    Jacobs, K.: Lecture notes on ergodic theory. Universitet Aarhus. Matematisk Institut (1962/63).Google Scholar
  11. [11]
    —: Neuere Methoden und Ergebnisse der Ergodentheorie. Ergebn. der Mathematik, N. F. Heft 29. Berlin-Göttingen-Heidelberg: Springer 1960.Google Scholar
  12. [12]
    Sinai, Ya. G.: On the concept of entropy for dynamical systems (in Russian). Doklady Akad. Nauk SSSR, n. Ser. 124, 768–771 (1959).Google Scholar
  13. [13]
    Billingsley, P.: Ergodic Theory and Information. New York: J. Wiley 1965.Google Scholar
  14. [14]
    Harris, T. E., and H. E. Robbins: Ergodic theory of Markov chains admitting an infinite invariant measure. Proc. nat. Acad. Sci. USA 39, 860–864 (1953).Google Scholar
  15. [15]
    Rokhlin, V. A.: Exact endomorphisms of a Lebesgue-space. Izvestija Akad. Nauk. SSSR, Ser. mat. 25, 499–530 (1961).Google Scholar
  16. [16]
    Chung, K. L.: Markov chains with stationary transition probabilities, 104. Berlin-Göttingen-Heidelberg: Springer 1960.Google Scholar
  17. [17]
    Choksi, J. R.: Extension of a theorem of E. Hopf. J. London math. Soc. 36, 81–88 (1961).Google Scholar
  18. [18]
    Wright, F. B.: The recurrence theorem. Amer. math. Monthly 68, 247–248 (1961).Google Scholar
  19. [19]
    Kakutani, S., and W. Parry: Infinite measure preserving transformations with „mixing“. Bull. Amer. math. Soc., 69, 752–756 (1963).Google Scholar
  20. [20]
    Abramov, L. M.: On the entropy of a flow. Doklady Akad. Nauk SSSR, n. Ser. 128, 873–876 (1959) (Russian).Google Scholar
  21. [21]
    Chacon, R. V.: Notices. Amer. math. Soc. 84, 709, Oct. 1965.Google Scholar
  22. [22]
    Parry, W.: Ergodic and spectral analysis of certain infinite measure preserving transformations. Proc. Amer. math. Soc. 16, 960–966 (1965).Google Scholar
  23. [23]
    Abramov, L. M., and V. A. Rokhlin: The entropy of a skew product of measure preserving transformations, Vestnik Leningrad. Univ. (Ser. Mat. Meh. Astron. Nr. 7) 17, 5–13 (1962).Google Scholar
  24. [24]
    Adler, R. L.: A note on the entropy of skew product transformations. Proc. Amer. math. Soc. 14, 665–669 (1963).Google Scholar
  25. [25]
    Krengel, U.: über den Absolutbetrag stetiger linearer Operatoren und seine Anwendung auf ergodische Zerlegungen. Math. Scandinav. 13, 151–187 (1963).Google Scholar
  26. [26]
    Rokhlin, V. A.: Entropy of metric automorphisms. Doklady Akad. Nauk SSSR, n. Ser. 124, 980–983 (1959) (Russian).Google Scholar
  27. [27]
    Jacobs, K.: Ergodic decomposition of the Kolmogorov-Sinai invariant: a simple proof. Trans. Sympos. Ergodic Theory at Tulane 1961; ed. Wright (1963).Google Scholar
  28. [28]
    Halmos, P. R.: The decomposition of measures. Duke math. J. 8, 386–392 (1941).Google Scholar
  29. [29]
    Rokhlin, V. A.: On the decomposition of a dynamical system into transitive components. Mat. Sbornik, n. Ser. 25, 235–249 (1949).Google Scholar
  30. [30]
    Gnedenko-Kolmogorov: Grenzverteilungen von Summen unabhÄngiger Zufallsgrö\en. Berlin: Akademie-Verlag (1960).Google Scholar
  31. [31]
    Ambrose, W., P. R. Halmos, and S. Kakutani: The decomposition of measures II. Duke math. J. 9, 43–47 (1942).Google Scholar
  32. [32]
    Pinsker, M. S.: Dynamical systems with complete positive or zero entropy. Doklady Akad. Nauk SSSR, n. Ser. 133, 1025–1026 (1960).Google Scholar
  33. [33]
    Rokhlin, V. A.: Generators in ergodic theory. Vestnik Leningrad. Univ. (Ser. Mat. Meh. Astron.) 18, 26–32 (1963).Google Scholar
  34. [34]
    -Generators in ergodic theory II; Vestnik Leningr. Univ., 13, (1965).Google Scholar
  35. [35]
    Parry, W.: Generators and strong generators in ergodic theory. Bull. Amer. math. Soc. 72, 294–296 (1966).Google Scholar
  36. [36]
    Rokhlin, V. A., and Ja. G. Sinai: Construction and properties of invariant measurable partitions. Doklady Akad. Nauk SSSR, n. Ser. 141, 1038–1041 (1961).Google Scholar
  37. [37]
    —: On the fundamental ideas of measure theory. Mat. Sbornik, n. Ser. 25 (67), 107–150 (1949).Google Scholar
  38. [38]
    Halmos, P. R.: Approximation theories for measure preserving transformations. Trans. Amer. math. Soc. 55, 1–18 (1944).Google Scholar
  39. [39]
    —:Lectures on ergodic theory. Math. Soc. of Japan, Tokyo (1956).Google Scholar
  40. [40]
    Hopf, E.: Ergodentheorie. Berlin: Springer 1937.Google Scholar
  41. [41]
    Hajian, A., and S. Kakutani: Transformations of α-type. Sympos. Oberwolfach, to appear.Google Scholar
  42. [42]
    Krengel, U.: Classification of states for operators. Proc. Fifth Berkeley Sympos. math. Statist Probability, to appear.Google Scholar

Copyright information

© Springer-Verlag 1967

Authors and Affiliations

  • Ulrich Krengel
    • 1
    • 2
  1. 1.University of ErlangenGermany
  2. 2.University of CaliforniaBerkeley

Personalised recommendations