Advertisement

Markov additive processes. I

  • Erhan Çinlar
Article

Keywords

Stochastic Process Probability Theory Mathematical Biology Additive Process Markov Additive Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blumenthal, R. M., Getoor, R. K.: Markov Processes and Potential Theory. New York: Academic Press 1968.Google Scholar
  2. 2.
    Çinlar, E.: Markov renewal theory. Advances appl. Probab. 1, 123–187 (1969).Google Scholar
  3. 3.
    Çinlar, E.: Markov Additive Processes II. Z. Wahrscheinlichkeitstheorie verw. Geb. 24, 95–121 (1972).Google Scholar
  4. 4.
    Doob, J. L.: Stochastic Processes. New York: Wiley 1953.Google Scholar
  5. 5.
    Ezhov, I. I., Skorohod, A. V.: Markov processes with homogeneous second component: I. Teor. Verojatn. Primen. 14, 1–13 (1969).Google Scholar
  6. 6.
    Fukushima, M., Hitsuda, M.: On a class of Markov processes taking values on lines and the central limit theorem. Nagoya math. J. 30, 47–56 (1967).Google Scholar
  7. 7.
    Keilson, J., Wishart, D. M. G.: A central limit theorem for processes defined on a finite Markov chain. Proc. Cambridge Philos. Soc. 60, 547–567 (1964).Google Scholar
  8. 8.
    Keilson, J., Wishart, D. M. G.: Boundary problems for additive processes defined on a finite Markov chain. Proc. Cambridge philos. Soc. 61, 173–190 (1965).Google Scholar
  9. 9.
    Lévy, P.: Processus semi-markoviens. Proc. Int. Congr. Math. (Amsterdam) 3, 416–426 (1954).Google Scholar
  10. 10.
    Miller, H. D.: A convexity property in the theory of random variables defined on a finite Markov chain. Ann. math. Statistics 32, 1260–1270 (1961).Google Scholar
  11. 11.
    Miller, H. D.: Absorbtion probabilities for sums of random variables defined on a finite Markov chain. Proc. Cambridge philos. Soc. 58, 286–298 (1962).Google Scholar
  12. 12.
    Neveu, J.: Une généralisation des processus à accroissements positifs indépendants. Abh. math. Sem. Univ. Hamburg 25, 36–61 (1961).Google Scholar
  13. 13.
    Pinsky, M.: Differential equations with a small parameter and the central limit theorem for functions defined on a finite Markov chain. Z. Wahrscheinlichkeitstheorie verw. Geb. 9, 101–111 (1968).Google Scholar
  14. 14.
    Pyke, R.: Markov renewal processes: definitions and preliminary properties. Ann. math. Statistics 32, 1231–1242(1961).Google Scholar
  15. 15.
    Pyke, R., Schaufele, R.: Limit theorems for Markov renewal processes. Ann. math. Statistics 35, 1746–1764 (1964).Google Scholar
  16. 16.
    Pyke, R., Schaufele, R.: The existence and uniqueness of stationary measures for Markov renewal processes. Ann. math. Statistics 37, 1439–1462 (1966).Google Scholar
  17. 17.
    Smith, W. L.: Regenerative stochastic processes. Proc. roy. Soc. London, Ser. A, 232, 6–31 (1955).Google Scholar
  18. 18.
    Volkov, I. S.: On probabilities for extreme values of sums of random variables defined on a homogeneous Markov chain with a finite number of states. Teor. Verojatn. Primen 5, 338–352 (1960).Google Scholar
  19. 19.
    Walsh, J. B.: The perfection of multiplicative functionals. Lecture Notes Math. 258: Séminaire de ProbabilitésVI, 233–242 (1972).Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • Erhan Çinlar
    • 1
  1. 1.Department of Industrial EngineeringNorthwestern UniversityEvanstonUSA

Personalised recommendations