Note on continuous additive functional of the 1-dimensional Brownian path

  • Hiroshi Tanaka
Article

Keywords

Stochastic Process Probability Theory Mathematical Biology Brownian Path 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Blumenthal, R.: An extended Markoff property. Trans. Amer. math. Soc. 85, 52–72 (1957).Google Scholar
  2. [2]
    Dynkin, E. B.: Some transformations of Markov processes. Doklady Akad. Nauk SSSR n. Ser. 133, 269–272 (1960).Google Scholar
  3. [3]
    —: Additive functionals of a Wiener process determined by stochastic integrals. Teor. Verojatn. Primen. 5, 441–452 (1960).Google Scholar
  4. [4]
    Hunt, G. A.: Some theorems concerning Brownian motion. Trans. Amer. math. Soc. 81, 294–319 (1956).Google Scholar
  5. [5]
    ItÔ, K.: On stochastic differential equations. Mem. Amer. math. Soc. No. 4.Google Scholar
  6. [6]
    —: On a formula concerning stochastic differentials. Nagoya math. J. 3, 55–65 (1951).Google Scholar
  7. [7]
    -, and H. P. McKean: Diffusion. (Forthcoming.)Google Scholar
  8. [8]
    Motoo, M.: Diffusion process corresponding to \(\tfrac{1}{2}\sum {\partial ^2 /\partial x^{i^2 } + \sum {b^i (x)\partial /\partial } x^i } \). Ann. Inst. statist. Math. 12, 37–61 (1960).Google Scholar
  9. [9]
    Ventsel, A. D.: Additive functionals of several dimensional Wiener process. Doklady Akad. Nauk SSSR n. Ser. 139, 13–16 (1961).Google Scholar
  10. [10]
    Volkonskii, V. A.: Random substitution of time in strong Markov process. Teor. Verojatn. Primen. 3, 332–350 (1958).Google Scholar

Copyright information

© Springer-Verlag 1963

Authors and Affiliations

  • Hiroshi Tanaka
    • 1
  1. 1.Mathematicae InstituteKyusyu UniversityFukuokaJapan

Personalised recommendations