Stochastic Abelian and Tauberian theorems

  • Ward Whitt
Article

Keywords

Stochastic Process Probability Theory Mathematical Biology Tauberian Theorem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Billingsley, P.: Convergence of Probability Measures. New York: John Wiley and Sons 1968.Google Scholar
  2. 2.
    Chernoff, H.: Estimation of the mode. Ann. Inst. Statist. Math. 16, 31–41 (1964).Google Scholar
  3. 3.
    Denardo, E.V.: Markov renewal programs with small interest rate. Ann. Math. Statistics 42, 477–496 (1971).Google Scholar
  4. 4.
    Doob, J.: Stochastic Processes. New York: Wiley 1953.Google Scholar
  5. 5.
    Dudley, R.M.: Distances of probability measures and random variables. Ann. Math. Statistics 39, 477–496 (1968).Google Scholar
  6. 6.
    Freedman, D.: Some invariance principles for functionals of a Markov chain. Ann. Math. Statistics 38, 1–7 (1967).Google Scholar
  7. 7.
    Gapoškin, V.F.: The law of the iterated logarithm for Cesàro's and Abel's method of summation. Theor. Probab. Appl. 10, 411–420 (1965).Google Scholar
  8. 8.
    Gerber, H.U.: The discounted central limit theorem and its Berry-Esséen analogue. Ann. Math. Statistics 42, 389–392 (1971).Google Scholar
  9. 9.
    Hanson, D.L. and F.T. Wright: Some convergence results for weighted sums of independent random variables. Z. Wahrscheinlichkeitstheorie verw. Geb. 19, 81–89 (1971).Google Scholar
  10. 10.
    Hatori, H.: On Markov chains with rewards. KŌdai Math. Sem. Reports 18, 184–192 (1966).Google Scholar
  11. 11.
    Hatori, H.: On continuous time Markov processes with rewards. KŌdai Math. Sem. Reports 18, 212–218 (1966).Google Scholar
  12. 12.
    Iglehart, D.L. and D.P. Kennedy: Weak convergence of the average of flag processes. J. Appl. Probab. 7, 747–753 (1970).Google Scholar
  13. 13.
    Iglehart, D. and W. Whitt: The equivalence of functional central limit theorems for counting processes and associated partial sums. Ann. Math. Statistics 42, 1372–1378 (1971).Google Scholar
  14. 14.
    Lamperti, J.: On the convergence of stochastic processes. Trans. Amer. Math. Soc. 104, 430–435 (1962).Google Scholar
  15. 15.
    Liggett, T.: An invariance principle for conditional sums of independent random variables. J. Math. Mech. 18, 559–570 (1968).Google Scholar
  16. 16.
    Liggett, T.: Weak convergence of conditioned sums of independent random vectors. Trans. Amer. Math. Soc. 152, 195–213 (1970).Google Scholar
  17. 17.
    Loève, M.: Probability Theory. 3rd. ed. Princeton, New Jersey: Van Nostrand 1963.Google Scholar
  18. 18.
    Müller, D.W.: Verteilungs-Invarianzprinzipien für das starke Gesetz der gro\en Zahl. Z. Wahrscheinlichkeitstheorie und verw. Geb. 10, 173–192 (1968).Google Scholar
  19. 19.
    Paley, R.E.A.C., N. Wiener, and A. Zygmund: Note on random functions. Math. Z. 37, 647–668 (1933).Google Scholar
  20. 20.
    Parthasarathy, K.R.: Probability Measures on Metric Spaces. New York: Academic Press 1967.Google Scholar
  21. 21.
    Prohorov, Yu.: Convergence of random processes and limit theorems in probability theory. Theor. Prob. Appl. 1, 157–214 (1956).Google Scholar
  22. 22.
    Pyke, R. and R. Schaufele: Limit theorems for Markov renewal processes. Ann. Math. Statistics 35, 1746–1764 (1964).Google Scholar
  23. 23.
    Pyke, R. and G.R. Shorack: Weak convergence of a two-sample empirical process and a new approach to Chernoff-Savage Theorems. Ann. Math. Statistics 39, 755–771 (1968).Google Scholar
  24. 24.
    Pyke, R.: Applications of almost surely convergent constructions of weakly convergent processes. Proc. Int. Symp. Prob. and Inf. Theory, pp. 187–200. Berlin-Heidelberg-New York: Springer 1969.Google Scholar
  25. 25.
    Skorohod, A.V.: Limit theorems for stochastic processes. Theor. Probab. Appl. 1, 261–290 (1956).Google Scholar
  26. 26.
    Skorohod, A.V.: Limit theorems for stochastic processes with independent increments. Theor. Prob. Appl. 2, 138–171 (1957).Google Scholar
  27. 27.
    Skorohod, A.V.: Studies in the Theory of Random Processes. Reading, Mass.: Addison Wesley 1965.Google Scholar
  28. 28.
    Stone, C.: Weak convergence of stochastic processes defined on semi-infinite time intervals. Proc. Amer. Math. Soc. 14, 694–696 (1963).Google Scholar
  29. 29.
    Stone, C.: Limit theorems for random walks, birth and death processes, and diffusion processes. Illinois J. Math. 7, 638–660 (1963).Google Scholar
  30. 30.
    Strassen, V.: An invariance principle for the law of the iterated logarithm. Z. Wahrscheinlichkeitstheorie und verw. Geb. 3, 211–226 (1964).Google Scholar
  31. 31.
    Veinott, A. F., Jr.: Discrete dynamic programming with sensitive discount optimality criteria. Ann. Math. Statistics 40, 1635–1660 (1969).Google Scholar
  32. 32.
    Whitt, W.: Weak convergence of first passage time processes. J. Appl. Probab. 8, 417–422 (1971).Google Scholar
  33. 33.
    Wichura, M.J.: On the construction of almost uniformly convergent random variables with given weakly convergent image laws. Ann. Math. Statistics 41, 284–291 (1970).Google Scholar
  34. 34.
    Widder, D.F.: The Laplace Transform. Princeton, New Jersey: Princeton University Press, 1946.Google Scholar
  35. 35.
    Woodroofe, M.: On the weak convergence of stochastic processes without discontinuities of the second kind. Z. Wahrscheinlichkeitstheorie und verw. Geb. 11, 18–25 (1968).Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • Ward Whitt
    • 1
  1. 1.Department of Administrative SciencesYale UniversityNew HavenUSA

Personalised recommendations