Stochastic Abelian and Tauberian theorems

  • Ward Whitt


Stochastic Process Probability Theory Mathematical Biology Tauberian Theorem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Billingsley, P.: Convergence of Probability Measures. New York: John Wiley and Sons 1968.Google Scholar
  2. 2.
    Chernoff, H.: Estimation of the mode. Ann. Inst. Statist. Math. 16, 31–41 (1964).Google Scholar
  3. 3.
    Denardo, E.V.: Markov renewal programs with small interest rate. Ann. Math. Statistics 42, 477–496 (1971).Google Scholar
  4. 4.
    Doob, J.: Stochastic Processes. New York: Wiley 1953.Google Scholar
  5. 5.
    Dudley, R.M.: Distances of probability measures and random variables. Ann. Math. Statistics 39, 477–496 (1968).Google Scholar
  6. 6.
    Freedman, D.: Some invariance principles for functionals of a Markov chain. Ann. Math. Statistics 38, 1–7 (1967).Google Scholar
  7. 7.
    Gapoškin, V.F.: The law of the iterated logarithm for Cesàro's and Abel's method of summation. Theor. Probab. Appl. 10, 411–420 (1965).Google Scholar
  8. 8.
    Gerber, H.U.: The discounted central limit theorem and its Berry-Esséen analogue. Ann. Math. Statistics 42, 389–392 (1971).Google Scholar
  9. 9.
    Hanson, D.L. and F.T. Wright: Some convergence results for weighted sums of independent random variables. Z. Wahrscheinlichkeitstheorie verw. Geb. 19, 81–89 (1971).Google Scholar
  10. 10.
    Hatori, H.: On Markov chains with rewards. KŌdai Math. Sem. Reports 18, 184–192 (1966).Google Scholar
  11. 11.
    Hatori, H.: On continuous time Markov processes with rewards. KŌdai Math. Sem. Reports 18, 212–218 (1966).Google Scholar
  12. 12.
    Iglehart, D.L. and D.P. Kennedy: Weak convergence of the average of flag processes. J. Appl. Probab. 7, 747–753 (1970).Google Scholar
  13. 13.
    Iglehart, D. and W. Whitt: The equivalence of functional central limit theorems for counting processes and associated partial sums. Ann. Math. Statistics 42, 1372–1378 (1971).Google Scholar
  14. 14.
    Lamperti, J.: On the convergence of stochastic processes. Trans. Amer. Math. Soc. 104, 430–435 (1962).Google Scholar
  15. 15.
    Liggett, T.: An invariance principle for conditional sums of independent random variables. J. Math. Mech. 18, 559–570 (1968).Google Scholar
  16. 16.
    Liggett, T.: Weak convergence of conditioned sums of independent random vectors. Trans. Amer. Math. Soc. 152, 195–213 (1970).Google Scholar
  17. 17.
    Loève, M.: Probability Theory. 3rd. ed. Princeton, New Jersey: Van Nostrand 1963.Google Scholar
  18. 18.
    Müller, D.W.: Verteilungs-Invarianzprinzipien für das starke Gesetz der gro\en Zahl. Z. Wahrscheinlichkeitstheorie und verw. Geb. 10, 173–192 (1968).Google Scholar
  19. 19.
    Paley, R.E.A.C., N. Wiener, and A. Zygmund: Note on random functions. Math. Z. 37, 647–668 (1933).Google Scholar
  20. 20.
    Parthasarathy, K.R.: Probability Measures on Metric Spaces. New York: Academic Press 1967.Google Scholar
  21. 21.
    Prohorov, Yu.: Convergence of random processes and limit theorems in probability theory. Theor. Prob. Appl. 1, 157–214 (1956).Google Scholar
  22. 22.
    Pyke, R. and R. Schaufele: Limit theorems for Markov renewal processes. Ann. Math. Statistics 35, 1746–1764 (1964).Google Scholar
  23. 23.
    Pyke, R. and G.R. Shorack: Weak convergence of a two-sample empirical process and a new approach to Chernoff-Savage Theorems. Ann. Math. Statistics 39, 755–771 (1968).Google Scholar
  24. 24.
    Pyke, R.: Applications of almost surely convergent constructions of weakly convergent processes. Proc. Int. Symp. Prob. and Inf. Theory, pp. 187–200. Berlin-Heidelberg-New York: Springer 1969.Google Scholar
  25. 25.
    Skorohod, A.V.: Limit theorems for stochastic processes. Theor. Probab. Appl. 1, 261–290 (1956).Google Scholar
  26. 26.
    Skorohod, A.V.: Limit theorems for stochastic processes with independent increments. Theor. Prob. Appl. 2, 138–171 (1957).Google Scholar
  27. 27.
    Skorohod, A.V.: Studies in the Theory of Random Processes. Reading, Mass.: Addison Wesley 1965.Google Scholar
  28. 28.
    Stone, C.: Weak convergence of stochastic processes defined on semi-infinite time intervals. Proc. Amer. Math. Soc. 14, 694–696 (1963).Google Scholar
  29. 29.
    Stone, C.: Limit theorems for random walks, birth and death processes, and diffusion processes. Illinois J. Math. 7, 638–660 (1963).Google Scholar
  30. 30.
    Strassen, V.: An invariance principle for the law of the iterated logarithm. Z. Wahrscheinlichkeitstheorie und verw. Geb. 3, 211–226 (1964).Google Scholar
  31. 31.
    Veinott, A. F., Jr.: Discrete dynamic programming with sensitive discount optimality criteria. Ann. Math. Statistics 40, 1635–1660 (1969).Google Scholar
  32. 32.
    Whitt, W.: Weak convergence of first passage time processes. J. Appl. Probab. 8, 417–422 (1971).Google Scholar
  33. 33.
    Wichura, M.J.: On the construction of almost uniformly convergent random variables with given weakly convergent image laws. Ann. Math. Statistics 41, 284–291 (1970).Google Scholar
  34. 34.
    Widder, D.F.: The Laplace Transform. Princeton, New Jersey: Princeton University Press, 1946.Google Scholar
  35. 35.
    Woodroofe, M.: On the weak convergence of stochastic processes without discontinuities of the second kind. Z. Wahrscheinlichkeitstheorie und verw. Geb. 11, 18–25 (1968).Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • Ward Whitt
    • 1
  1. 1.Department of Administrative SciencesYale UniversityNew HavenUSA

Personalised recommendations