Advertisement

Sequential fixed-width confidence intervals for a nonparametric density function

  • Winfried Stute
Article

Summary

In this paper sequential fixed-width confidence intervals for a nonparametric density function are derived. These are formed from certain values of a kernel density estimator. The efficiency of such procedures is measured in terms of the expected stopping time.

Keywords

Confidence Interval Density Function Stochastic Process Probability Theory Mathematical Biology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anscombe, F.J.: Large sample theory of sequential estimation. Proc. Cambridge Philos. Soc. 48, 600–607 (1952)Google Scholar
  2. 2.
    Bickel, P.J., Yahav, J.A.: Asymptotically optimal Bayes and minimax procedures in sequential estimation. Ann. Math. Statist. 39, 442–456 (1968)Google Scholar
  3. 3.
    Carroll, R.J.: On sequential density estimation. Z. Wahrscheinlichkeitstheorie verw. Gebiete 36, 137–151 (1976)Google Scholar
  4. 4.
    Chow, Y.S., Robbins, H.: On the asymptotic theory of fixed-width sequential confidence intervals for the mean. Ann. Math. Statist. 36, 457–462 (1965)Google Scholar
  5. 5.
    Epanechnikov, V.A.: Nonparametric estimation of a multivariate probability density. Theor. Probab. Appl. 14, 153–158 (1969)Google Scholar
  6. 6.
    Geertsema, J.C.: Sequential confidence intervals based on rank tests. Ann. Math. Statist. 41, 1016–1026 (1970)Google Scholar
  7. 7.
    Parzen, E.: On estimation of a probability density function and mode. Ann. Math. Statist. 33, 1065–1976 (1962)Google Scholar
  8. 8.
    Rosenblatt, M.: Curve estimates. Ann. Math. Statist. 42, 1815–1841 (1971)Google Scholar
  9. 9.
    Sen, P.K., Ghosh, M.: On bounded length sequential confidence intervals based on one-sample rank order statistics. Ann. Math. Statist. 42, 189–203 (1971)Google Scholar
  10. 10.
    Stute, W.: The oscillation behavior of empirical processes. Ann. Probab. 10, 86–107 (1982)Google Scholar
  11. 11.
    Stute, W.: A law of the logarithm for kernel density estimators. Ann. Probab. 10, 414–422 (1982)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Winfried Stute
    • 1
  1. 1.Fachbereich 6 MathematikUniversität GesamthochschuleSiegen 21Federal Republic of Germany

Personalised recommendations