Advertisement

Theoretica chimica acta

, Volume 76, Issue 2, pp 125–135 | Cite as

Theoretical study of the borane and diborane positive ions

  • M. Sana
  • G. Leroy
  • Ch. Henriet
Article

Summary

We describe the geometric, electronic and energetic (ΔHf) properties of B2H 6 + and BH 3 + . Comparisons with experimental measurements have also been made with borane, diborane, BH, BH+ and BH 2 + . All the theoretical calculations have been performed with various basis sets: 6-31G, 6-31G⋆⋆ and 6-31+G⋆⋆ (2d,f). The geometry optimizations are done at the SCF (RHF or UHF), MP2 and MP4 levels.

Key words

Boranes Diboranes Related positive ions Electronic structures Thermochemical properties Appearance potential 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and notes

  1. 1.
    Stock A (1933) Hydrides of boron and silicon. Cornell University Press, Ithaca, NYGoogle Scholar
  2. 2.
    Fehlner TP, Housecroft CE (1986) In: Liebman JF, Greenberg A (eds) Molecular structure and energetics, vol 1. Chemical bonding models. Verlag Chemie, WeinheimGoogle Scholar
  3. 3.
    Mohr RR, Lipscomb WN (1986) Inorg Chem 25:1053Google Scholar
  4. 4.
    Sana M, Leroy G, Henriet C (1988) J Mol Struct (Theochem), in press; where the scaling relation has been established in 6-31G⋆⋆ for a set of borane and diborane; other scaling factor is available from [16]Google Scholar
  5. 5.
    Pople JA, Frisch M, Luke BT, Binkley JS (1983) Int J Quant Chem 17:307Google Scholar
  6. 6.
    BDE(BH3-BH3)=41.1−7.1+2=36.0 kcal mol−1: DeFrees DJ, Raghavachari K, Schlegel HB, Pople JA, Schleyer PvR (1987) J Phys Chem 91:1857Google Scholar
  7. 6a.
    BDE(BH3-BH3)=37.4 and 35.4 kcal mol−1: Stanton JF, Bartlett RJ, Lipscomb WN, (1987) Chem Phys Lett 138:525Google Scholar
  8. 6b.
    BDE(BH3-BH3) =40 + thermal corrections ≈ 36 kcal mol−1: Ortiz JV, Lipscomb WN (1983) Chem Phys Lett 103:59Google Scholar
  9. 7.
    BDE(BH3-BH3)=43.1−6.1+2.6=39.6 kcal mol−1: Page M, Adams GF, Binkley JS, Melius CF (1987) J Am Chem Soc 91:2675Google Scholar
  10. 8.
    Mappes GW, Fridmann SA, Fehlner TP (1970) J Phys Chem 74:3307Google Scholar
  11. 9.
    Fehlner TP, Koski WS (1964) J Am Chem Soc 86:2733Google Scholar
  12. 10.
    Wagman DD, Evans WH, Parker VB, Schumm RH, Halow I, Bailey SM, Churney KL, Nuttall RL (1982) J Phys Chem Ref Data 11 [Suppl 2] 2–123Google Scholar
  13. 11.
    Sana M, Leroy G (1987) J Mol Struct (Theochem) 151:307Google Scholar
  14. 12.
    Raghavachari K, Schleyer PvR, Spitznagel GW (1983) J Am Chem Soc 105:5917Google Scholar
  15. 13.
    Schleyer PvR, Kos AJ, Pople JA, Balaban AT (1982) J Am Chem Soc 104:3771; (1983) J Am Chem Soc 105:5258Google Scholar
  16. 14.
    Pople JA, Tidor B, Schleyer PvR (1982) Chem Phys Lett 88:533Google Scholar
  17. 15.
    Curtiss LA, Pople JA (1988) J Phys Chem 92:894Google Scholar
  18. 16.
    Hehre WJ, Random L, Schleyer PvR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New YorkGoogle Scholar
  19. 17.
    Mc Kee ML, Lipscomb WN (1985) Inorg Chem 24:762; Pople JA, Luke BT, Frisch M, Binkley JS (1985) J Phys Chem 89:2198Google Scholar
  20. 18.
    Chase Jr MW, Davies CA, Downey Jr JR, Frurip DJ, McDonald RA, Syverud AN (1985) JANAF thermochemical tables [Suppl 1] J Phys Chem Ref. Data, vol 14Google Scholar
  21. 19.
    Lovas FJ (1982) J Phys Chem Ref Data 11:251Google Scholar
  22. 20.
    Pople JA, Luke BT, Frisch MJ, Binkley JS (1985) J Phys Chem 89:2198; Ho P, Coltrin ME, Binkley JS, Melius CF (1985) J Phys Chem 89:4647; Sana M, Leroy G, Peeters D, Younang E (1987) J Mol Struct (Theochem) 151:325Google Scholar
  23. 21.
    Sana M (1985) In: Daudel R (ed) Structure and dynamics of molecular systems. Reidel, DordrechtGoogle Scholar
  24. 22.
    Ros = Rosentock HM, Draxl K, Steiner BW, Herron JT (1977) J Phys Chem Ref Data 6:73Google Scholar
  25. 22a.
    Wil67 = Wilson JH McGee Jr HA (1967) J Chem Phys 46:1444Google Scholar
  26. 22b.
    NBS82 = [8]Google Scholar
  27. 22c.
    JANAF85 = [18]Google Scholar
  28. 23.
    CODATA recommended key values, (1978) J Chem Thermodynamics 10:903Google Scholar
  29. 24.
    Lia84 = Lias SJ, Liebman JF, Levin RD (1984) J Phys Chem Ref Data 13:695Google Scholar
  30. 25.
    Bru70 = Brudle CR, Robin MB, Basch H, Pinsky M, Bond A (1970) J Am Chem Soc 92:3863; Rose TL, Frey R, Brehm B (1970) Bull Am Phys Soc 15:430Google Scholar
  31. 25a.
    Gan67 = Ganguli PS, McGee Jr HA (1969) J Chem Phys 50:4658Google Scholar
  32. 25b.
    Wil67 = Wilson JH, McGee Jr HA (1967) J Chem Phys 46:1444Google Scholar
  33. 25c.
    Bau64 = Bauer SH, Herzberg G, Johns JWC (1964) J Mol Spectry 13: 256Google Scholar
  34. 25d.
    Edl77 = Edlén B, Ölme A, Herzberg G, Johns JWC (1970) J Opt Soc Am 60:889Google Scholar
  35. 26.
    Ruscic B, Mayhew CA, Berkowitz J (1988) J Chem Phys 88:5580Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • M. Sana
    • 1
    • 3
  • G. Leroy
    • 1
  • Ch. Henriet
    • 2
  1. 1.Laboratoire de Chimie QuantiqueBâtiment LavoisierLouvain-la-NeuveBelgium
  2. 2.Cray Research FranceParisFrance
  3. 3.National Fund for Scientific ResearchBelgium

Personalised recommendations