Advertisement

Theoretica chimica acta

, Volume 76, Issue 4, pp 227–245 | Cite as

A numerically stable procedure for calculating Møller-Plesset energy derivatives, derived using the theory of Lagrangians

  • Trygve Helgaker
  • Poul Jørgensen
  • Nicholas C. Handy
Article

Summary

When Møller-Plesset energy derivatives are determined in the canonical Hartree-Fock basis, singularities or instabilities may arise due to degeneracies among the occupied or unoccupied orbitals. If a non-canonical basis is used these singularities disappear. Numerically stable expressions are presented for the molecular gradient and Hessian of the second-order Møller-Plesset energy, obtained by differentiating a fully variational Lagrangian of the energy constructed in a non-canonical representation. By using a non-canonical representation, singularities and instabilities are avoided, and the variational property of the Lagrangian ensures that Wigner's 2n + 1 rule is satisfied for the orbital derivatives and that the multipliers satisfy the stronger 2n + 2 rule. It is shown that the most expensive step in the calculation of the Hessian scales as Mn4o, where M is the number of independent Cartesian distortions, n the total number of orbitals, and o the number of occupied orbitals.

Key words

Energy derivatives Møller-Plesset Non-canonical basis Lagrangian formulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pople JA, Krishnan R, Schlegel HB, Binkley JS (1979) Int J Quantum Chem Symp 13:225Google Scholar
  2. 2.
    Handy NC, Arnos RD, Gaw JF, Rice JE, Simandiras ED, Lee TJ, Harrison RJ, Laidig WD, Fitzgerald GB, Bartlett RJ (1986) In: Jørgensen P, Simons J. Geometrical derivatives of energy surfaces and molecular properties. Reidel, Dordrecht, p 179Google Scholar
  3. 3.
    Handy NC, Amos RD, Gaw JF, Rice JE, Simandiras ED (1985) Chem Phys Lett 120:151Google Scholar
  4. 4.
    Harrison RJ, Fitzgerald GB, Laidig WD, Bartlett RJ (1986) Chem Phys Lett 124:291Google Scholar
  5. 5.
    Simandiras ED, Handy NC, Amos RD (1987) Chem Phys Lett 133:324Google Scholar
  6. 6.
    Jørgensen P, Simons J (1983) J Chem Phys 79:334Google Scholar
  7. 7.
    Handy NC, Schaefer III HF, (1984) J Chem Phys 81:5031Google Scholar
  8. 8.
    Jørgensen P, Helgaker T (1988) J Chem Phys 89:1560Google Scholar
  9. 9.
    Jørgensen P, Swanstrøm P, Yeager DL, Olsen J (1983) Int J Quantum Chem 23:959Google Scholar
  10. 10.
    Pulay P (1983) J Chem Phys 78:5043Google Scholar
  11. 11.
    Helgaker T, Jørgensen P (1989) Theor Chim Acta 75:111Google Scholar
  12. 12.
    Pulay P, Sæbø S (1986) Theor Chim Acta 69:357Google Scholar
  13. 13.
    Rice JE, Amos RD (1985) Chem Phys Lett 122:585Google Scholar
  14. 14.
    Linderberg J, Öhrn Y (1973) Propagators in quantum chemistry. Academic Press, LondonGoogle Scholar
  15. 15.
    Jørgensen P, Simons J (1981) Second quantization-based methods in quantum chemistry, Academic Press, New YorkGoogle Scholar
  16. 16.
    Pulay P, Sæbø S, Meyer W (1984) J Chem Phys 81:1901Google Scholar
  17. 17.
    Helgaker TU, Almlöf J (1984) Int J Quantum Chem 26:275Google Scholar
  18. 18.
    Simons J, Jørgensen P, Helgaker TU (1984) Chem Phys 86:413Google Scholar
  19. 19.
    Gerratt J, Mills IM (1968) J Chem Phys 49:1719Google Scholar
  20. 20.
    Helgaker T, Jørgensen P (1988) Adv Quantum Chem 19:183Google Scholar
  21. 21.
    Siegbahn PEM, Almlöf J, Heiberg A, Roos BO (1981) J Chem Phys 74:2384Google Scholar
  22. 22.
    Amos RD, Rice JE (1988) The Cambridge analytic derivatives package issue 4.0. CambridgeGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Trygve Helgaker
    • 1
  • Poul Jørgensen
    • 1
  • Nicholas C. Handy
    • 2
  1. 1.Department of ChemistryÅrhus UniversityAarhus CDenmark
  2. 2.University Chemical LaboratoryCambridgeUK

Personalised recommendations