Skip to main content
Log in

A method of incorporating quadruple correction in the scheme of multi-reference singly and doubly excited configuration interaction — a CSF based coupled pair approximation

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Summary

We develop an approximate size consistent method within a framework of the multi-reference configuration interaction scheme. The Rayleigh-Schrödinger perturbation theory is employed with a specific selection of the unperturbed part of the electronic Hamiltonian. The second order energy is obtained by a set of equations similar to the quasidegenerate variational perturbation theory of Cave and Davidson. The approximate fourth order energy is obtained by solving a set of equations similar to the coupled electron pair approximation (CEPA). The method has been tested for two simple systems, BeH2 and N2, and the results are quite encouraging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shavitt I (1977) The method of configuration interaction. In: Schaefer III HF (ed) Methods of electronic structure theory, vol. 3. Plenum Press, New York, pp 189–276

    Google Scholar 

  2. Roos BO and Siegbahn PEM (1977) The direct configuration interaction method from molecular integrals. In: Schaefer III HF (ed) Methods of electronic structure theory, vol. 3. Plenum Press, New York, pp 277–318

    Google Scholar 

  3. Davidson ER (1974) Intern J Quantum Chem VII:83–89

    Google Scholar 

  4. Shavitt I (1977) Intern J Quantum Chem Symp 11:131–148, (1978) ibid 12:5–32

    Google Scholar 

  5. Siegbahn PEM (1980) J Chem Phys 72:1647–1656

    Google Scholar 

  6. Liu B, Yoshimine M (1981) J Chem Phys 74:612–616

    Google Scholar 

  7. Taylor PR (1981) J Chem Phys 74:1256–1270

    Google Scholar 

  8. Buenker RJ, Peyerimhoff SD (1974) Theor Chim Acta 35:33–58; (1975) ibid 39:217–228

    Google Scholar 

  9. Knowles PJ, Handy NC (1984) Chem Phys Letters 111:315–321

    Google Scholar 

  10. Sasaki F, Tanaka K, Noro T, Togasi M, Nomura T, Sekiya M, Gonoi T, Ohno K (1987) Theor Chim Acta 72:123–138

    Google Scholar 

  11. Nesbet RK (1965) Advan Chem Phys 9:321–363; (1969) ibid 14:1–34

    Google Scholar 

  12. Bartlett RJ (1981) Annu Rev Phys Chem 32:359–401

    Google Scholar 

  13. Langhoff SR, Davidson ER (1974) Int J Quantum Chem VIII:61–72

    Google Scholar 

  14. Davidson ER, Silver DW (1977) Chem Phys Letters 52:403–406

    Google Scholar 

  15. Buenker RJ, Shih S-K, Peyerimhoff SD (1979) Chem Phys 36:97–112

    Google Scholar 

  16. Burton PG, Gray PD (1983) Chem Phys Letters 96:453–457

    Google Scholar 

  17. Meissner L (1988) Chem Phys Letters 146:204–210

    Google Scholar 

  18. Davidson ER, McMurchie LE, Day SJ (1981) J Chem Phys 74:5491–5496

    Google Scholar 

  19. Cave RJ, Davidson ER (1988) J Chem Phys 88:5770–5778

    Google Scholar 

  20. Cave RJ, Davidson ER (1988) J Chem Phys 89:6798–6814

    Google Scholar 

  21. Ahlrichs R, Scharf P, Ehrhardt C (1985) J Chem Phys 82:890–898

    Google Scholar 

  22. Gdanitz RJ, Ahlrichs R (1988) Chem Phys Letters 143:413–420

    Google Scholar 

  23. Kutzelnigg W (1977) Pair correlation theories. In: Schaefer III HF (ed) Methods of electronic structure theory, vol.3. Plenum Press, NewYork, pp129–188

    Google Scholar 

  24. Meyer W (1977) Configuration expansion by means of pseudonatural orbitals. In: Schaefer III HF (ed) Methods of electronic structure theory, vol. 3. Plenum Press, New York, pp 413–446

    Google Scholar 

  25. Cizek J (1966) J Chem Phys 45:4256–4266; Cizek J (1969) Adv Chem Phys 14:35–91

    Google Scholar 

  26. Pople JA, Krishnan R, Schlegel HB, Binkley JS (1978) Int J Quantum Chem XIV:545–560

    Google Scholar 

  27. Jeziorski B, Monkhorst HJ (1981) Phys Rev A24:1668–1681

    Google Scholar 

  28. Lindgren I (1978) Int J Quantum Chem S12:33–58

    Google Scholar 

  29. Mukherjee D (1986) Chem Phys Letters 125:207–212

    Google Scholar 

  30. Nakatsuji H (1985) J Chem Phys 83:713–722

    Google Scholar 

  31. Meissner L, Jankowski K, Wasilewski J (1988) Int J Quantum Chem XXXIV:535–557

    Google Scholar 

  32. Shavitt I, Redmon LT (1980) J Chem Phys 73:5711–5717

    Google Scholar 

  33. Banerjee A, Simons J (1981) Int J Quantum Chem 19:207–216; (1982) J Chem Phys 76:4548–4559

    Google Scholar 

  34. Baker H, Robb MA (1983) Mol Phys 50:1077–1082

    Google Scholar 

  35. Tanaka K, Terashima H (1984) Chem Phys Letters 106:558–562

    Google Scholar 

  36. Laidig WD, Bartlett RJ (1984) Chem Phys Letters 104:424–430; Laidig WD, Saxe P, Bartlett RJ (1987) J Chem Phys 86:887–907

    Google Scholar 

  37. Kutzelnigg W. (1975) Chem Phys Letters 35:283–285

    Google Scholar 

  38. Purvis III GD, Bartlett RJ (1982) J Chem Phys 76:1910–1918

    Google Scholar 

  39. Purvis III GD, Shepard R, Brown FB, Bartlett RJ (1983) Int J Quantum Chem XXIII:835–846

    Google Scholar 

  40. Dunning TH (1970) J Chem Phys 53:2823–2833

    Google Scholar 

  41. Huzinaga S (1965) J Chem Phys 42:1293–1302

    Google Scholar 

  42. McLean AD, Liu B (1973) J Chem Phys 58:1066–1078

    Google Scholar 

  43. Bauschlicher Jr CW, Langhoff SR (1987) J Chem Phys 86:5595–5599

    Google Scholar 

  44. Werner H-J, Knoles PJ (1988) J Chem Phys 89:5803–5814

    Google Scholar 

  45. Kashiwagi H, Takada T, Miyoshi E, Obara S, Sasaki F (1977) Library program of the computer center of Institute for Molecular Science, Okazaki, Japan

  46. Murakami A, Iwaki H, Terashima H, Shoda T, Kawaguchi T, Noro T (1985) Library program of the computing center of Hokkaido University, Sapporo, Japan

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, K., Sakai, T. & Terashima, H. A method of incorporating quadruple correction in the scheme of multi-reference singly and doubly excited configuration interaction — a CSF based coupled pair approximation. Theoret. Chim. Acta 76, 213–225 (1989). https://doi.org/10.1007/BF00532005

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00532005

Key words

Navigation