Advertisement

Reversible competition processes

  • Donald L. Iglehart
Article

Keywords

Stochastic Process Probability Theory Mathematical Biology Competition Process Reversible Competition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Chung, K. L.: Markov Chains with Stationary Transition Probabilities. Berlin-Göttingen-Heidelberg: Springer 1960.Google Scholar
  2. [2]
    Feller, W.: On the integro-differential equations of purely discontinuous Markov pro-cesses. Trans. Amer. math. Soc. 48, 488–515 (1940); ibid. 58, 474 (1945).Google Scholar
  3. [3]
    —: The birth and death processes as diffusion processes. J. Math. pur. appl. 38, 301–345 (1959).Google Scholar
  4. [4]
    Hennequin, P.: Processus en cascade a n dimensions et problèmes de moments. C. r. Acad. Sci. Paris 247, 857–859 (1958).Google Scholar
  5. [5]
    Hille, E., and R. S. Phillips: Functional analysis and semi-groups. Amer. Math. Soc. Colloquim Publications 31 (1957).Google Scholar
  6. [6]
    Karlin, S.,and J. L. McGregor: The differential equations of birth and death processes and the Stieltjes moment problem. Trans. Amer. math. Soc. 85, 489–546 (1957).Google Scholar
  7. [7]
    — —: The classification of bith and death processes. Trans. Amer. math. Soc. 86, 366–400 (1957).Google Scholar
  8. [8]
    Kendall, D. G.: Unitary dilations of one-parameter semigroups of Markov transition operators, and the corresponding integral representations for Markov processes with a countable infinity of states. Proc. London math. III. Ser. 2, 417–431 (1959).Google Scholar
  9. [9]
    —, and G. E. H. Reuter: The calculation of the ergodic projection for Markov chains and processes with a countable infinity of states. Acta math. 97, 103–144 (1957).Google Scholar
  10. [10]
    Lévy, P.: Systémes Markoviens et stationnaires: Cas denombrable. Ann. Sci. Ecole norm. Sup., III. Sér. 68, 327–381 (1951).Google Scholar
  11. [11]
    Orey, S.: Strong ratio limit property. Bull. Amer. math. Soc. 67, 571–574 (1961).Google Scholar
  12. [12]
    Pruitt, W.: Bilateral birth and death processes. ONR Technical Report No. 22, Con-tract Nonr-225(28) (NR-047-019), Applied Math. and Stat. Lab., Stanford (1960).Google Scholar
  13. [13]
    Reuter, G. E. H.: Denumerable Markov processes and the associated contraction semigroups on l. Acta math. 97, 1–46 (1957).Google Scholar
  14. [14]
    —: Competition Processes. Proc. Fourth Berkeley Sympos. math. Statist. Probability, vol. II, Berkeley, Calif.: University of California Press, 1961.Google Scholar

Copyright information

© Springer-Verlag 1964

Authors and Affiliations

  • Donald L. Iglehart
    • 1
    • 2
  1. 1.College of EngineeringCornell UniversityIthaca
  2. 2.Mathematical InstituteOxford

Personalised recommendations