Reversible competition processes

  • Donald L. Iglehart


Stochastic Process Probability Theory Mathematical Biology Competition Process Reversible Competition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Chung, K. L.: Markov Chains with Stationary Transition Probabilities. Berlin-Göttingen-Heidelberg: Springer 1960.Google Scholar
  2. [2]
    Feller, W.: On the integro-differential equations of purely discontinuous Markov pro-cesses. Trans. Amer. math. Soc. 48, 488–515 (1940); ibid. 58, 474 (1945).Google Scholar
  3. [3]
    —: The birth and death processes as diffusion processes. J. Math. pur. appl. 38, 301–345 (1959).Google Scholar
  4. [4]
    Hennequin, P.: Processus en cascade a n dimensions et problèmes de moments. C. r. Acad. Sci. Paris 247, 857–859 (1958).Google Scholar
  5. [5]
    Hille, E., and R. S. Phillips: Functional analysis and semi-groups. Amer. Math. Soc. Colloquim Publications 31 (1957).Google Scholar
  6. [6]
    Karlin, S.,and J. L. McGregor: The differential equations of birth and death processes and the Stieltjes moment problem. Trans. Amer. math. Soc. 85, 489–546 (1957).Google Scholar
  7. [7]
    — —: The classification of bith and death processes. Trans. Amer. math. Soc. 86, 366–400 (1957).Google Scholar
  8. [8]
    Kendall, D. G.: Unitary dilations of one-parameter semigroups of Markov transition operators, and the corresponding integral representations for Markov processes with a countable infinity of states. Proc. London math. III. Ser. 2, 417–431 (1959).Google Scholar
  9. [9]
    —, and G. E. H. Reuter: The calculation of the ergodic projection for Markov chains and processes with a countable infinity of states. Acta math. 97, 103–144 (1957).Google Scholar
  10. [10]
    Lévy, P.: Systémes Markoviens et stationnaires: Cas denombrable. Ann. Sci. Ecole norm. Sup., III. Sér. 68, 327–381 (1951).Google Scholar
  11. [11]
    Orey, S.: Strong ratio limit property. Bull. Amer. math. Soc. 67, 571–574 (1961).Google Scholar
  12. [12]
    Pruitt, W.: Bilateral birth and death processes. ONR Technical Report No. 22, Con-tract Nonr-225(28) (NR-047-019), Applied Math. and Stat. Lab., Stanford (1960).Google Scholar
  13. [13]
    Reuter, G. E. H.: Denumerable Markov processes and the associated contraction semigroups on l. Acta math. 97, 1–46 (1957).Google Scholar
  14. [14]
    —: Competition Processes. Proc. Fourth Berkeley Sympos. math. Statist. Probability, vol. II, Berkeley, Calif.: University of California Press, 1961.Google Scholar

Copyright information

© Springer-Verlag 1964

Authors and Affiliations

  • Donald L. Iglehart
    • 1
    • 2
  1. 1.College of EngineeringCornell UniversityIthaca
  2. 2.Mathematical InstituteOxford

Personalised recommendations