Me\fehler und Information

  • V. Strassen
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Kolmogoroff, A.: Grundbegriffe der Wahrscheinlichkeitsrechnung. Ergebnisse der Mathematik 2, No. 3, Berlin 1933.Google Scholar
  2. [2]
    Blackwell, D., L. Breiman and A. J. Thomasian: The capacity of a class of channels. Ann. math. Statistics 30, 1229 (1959).Google Scholar
  3. [3]
    — — —: The capacities of certain channel classes under random coding. Ann. mat. Statistics 31, 558 (1960).Google Scholar
  4. [4]
    Wolfowitz, J.: Simultaneous channels. Arch. Rational Mech. Anal. 4, No. 4, 371 (1960).Google Scholar
  5. [5]
    -Coding Theorems of Information Theory. Ergebnisse der Mathematik, Heft 31, Berlin 1961.Google Scholar
  6. [6]
    Kiefer, J., and J. Wolfowitz: Channels with arbitrary varying channel probability functions. Information and Control. Vol. 5, No. 1 (1962).Google Scholar
  7. [7]
    Choquet, G.: Theory of Capacities. Ann. Inst. Fourier. 5, 131 (1953/54).Google Scholar
  8. [8]
    Jacobs, K.: Die übertragung diskreter Informationen durch periodische und fastperiodische KanÄle. Math. Ann. 137, 125 (1959).Google Scholar
  9. [9]
    Shapley, L. S.: A value for n-Person Garnes. Contributions to the Theory of Games II (1953).Google Scholar
  10. [10]
    Neumann, J. von, und O. Morgenstern: Spieltheorie und wirtschaftliches Verhalten. Würzburg 1961.Google Scholar
  11. [11]
    Burger, E.: Einführung in die Theorie der Spiele. Berlin 1959.Google Scholar
  12. [12]
    Lehmann, E. L.: Testing Statistical Hypotheses. New York 1961.Google Scholar
  13. [13]
    Wald, A.: Statistical Decision Functions. New York 1950.Google Scholar
  14. [14]
    Le Cam, L.: A Generalization of the Theory of A. Wald. Ann. math. Statistics 26, 69 (1955).Google Scholar
  15. [15]
    Blackwell, D., and M. A. Girshick: Theory of Games and Statistical Decisions. New York 1954.Google Scholar
  16. [16]
    Lehmann, E. L.: On the existence of least favorable distributions. Ann. math. Statistics 23, 408 (1952).Google Scholar
  17. [17]
    Strassen, V.: Asymptotische AbschÄtzungen in Shannons Informationstheorie. Transactions of the third Prague Conference on Information Theory, Statistical Decision Functions and Random Processes (zum Druck eingereicht).Google Scholar
  18. [18]
    Chintschin, A. J.: über grundlegende SÄtze der Informationstheorie. Math. Forschungs-berichte, Berlin 1957.Google Scholar
  19. [19]
    Shannon, C. E.: The zero capacity of a noisy channel. IRE Trans., Inform. Theory, IT-2 (1956).Google Scholar
  20. [20]
    Jacobs, K.: Neuere Methoden und Ergebnisse der Ergodentheorie. Ergebnisse der Mathematik, Heft 29, Berlin 1960.Google Scholar
  21. [21]
    Dunford, N., and J. T. Schwartz: Linear Operators. London 1958.Google Scholar
  22. [22]
    Loomis, L. H.: An Introduction to Abstract Harmonic Analysis. New York 1953.Google Scholar
  23. [23]
    Kullback, S., and R. A. Leibler: Information and Statistics. New York 1959.Google Scholar
  24. [24]
    Dobruschin, R. L.: A general formulation of the fundamental Shannon theorem in information theory. Uspechi mat. Nauk. 14, 3 (1959).Google Scholar
  25. [25]
    Breiman, L.: On achieving channel capacity in finite-memory channels. Illinois J. Math. 4, 246 (1960).Google Scholar
  26. [26]
    Perez, A.: Sur la théorie de l'information dans le cas d'un alphabet abstrait. Trans. first Prague Conference of Information Theory, Statistical Decision Functions and Random Processes (1957).Google Scholar
  27. [27]
    Root, W. L.: Communications through Unspecified Additive Noise. Information and Control 4, Nr. 1, 15 (1961).Google Scholar
  28. [28]
    Jacobs, K.: Almost Periodic Channels. Colloquium on Combinatorial Methods in Probability Theory, Aarhus 1962.Google Scholar
  29. [29]
    Maak, W.: Pastperiodische Funktionen. Berlin 1950.Google Scholar
  30. [30]
    Mordell, L. J.: On the inequality \(\sum\limits_{r = 1}^n {\frac{{x_r }}{{x_{r + 1} + x_{r + 2} }} \geqq } \frac{n}{2}\) and some others. Abh. math. Sem. Univ. Hamburg 22, (1958).Google Scholar

Copyright information

© Springer-Verlag 1964

Authors and Affiliations

  • V. Strassen
    • 1
    • 2
  1. 1.Institut für MathematischeStatistik der UniversitÄt34 Göttingen
  2. 2.Statistics DepartmentUniversity of CaliforniaBerkeley

Personalised recommendations