Almost exchangeable sequences of random variables

  • Istvan Berkes
  • Haskell P. Rosenthal


Stochastic Process Probability Theory Mathematical Biology Exchangeable Sequence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aldous, D.J.: Limit theorems for subsequences of arbitrarily-dependent sequences of random variables. Z. Wahrscheinlichkeitstheor. Verw. Geb. 40, 59–82 (1977)Google Scholar
  2. 2.
    Aldous, D.J.: Subspaces of L 1 via random measures. Trans. Am. Math. Soc. 267, 445–463 (1981)Google Scholar
  3. 3.
    Baxter, J.R., Chacon, R.V.: Compactness of stopping times. Z. Wahrscheinlichkeitstheor. Verw. Geb. 40, 169–182 (1977)Google Scholar
  4. 4.
    Berkes, I., Péter, E.: Exchangeable r.v.'s and the subsequence principle. Z. Wahrscheinlichkeitstheor. Verw. Geb. [To appear]Google Scholar
  5. 5.
    Dacunha-Castelle, D.: Indiscernability and exchangeability in L p-spaces. Proc. Aarhus Seminar on random series, convex sets and geometry of Banach spaces. Aarhus Universitet, various publications 25, 50–56 (1975)Google Scholar
  6. 6.
    Dacunha-Castelle, D., Krivine, J.L.: Sous-espace de L 1. Isr. J. Math. 26, 320–351 (1977)Google Scholar
  7. 7.
    Garling, D.J.H.: Stable Banach spaces, random measures an Orlicz function spaces. Probability Measures on Groups (H. Heyer, ed.). Lect. Notes Math., no. 928 Berlin-Heidelberg-New York: Springer 1982Google Scholar
  8. 8.
    Henson, W.: (in preparation).Google Scholar
  9. 9.
    Kadec, M.I, Pełczynski, A.: Bases, lacunary sequences and complemented subspaces in the spaces L p. Stud. Math. 21, 161–176 (1962)Google Scholar
  10. 10.
    Krivine, J.L.: Sous-espaces de dimension finie des espaces de Banach reticulés. Ann. Math. 104, 1–29 (1976)Google Scholar
  11. 11.
    Krivine, J.L., Maurey, B.: Espaces de Banach stables. Isr. J. Math. 39, 273–295 (1981)Google Scholar
  12. 12.
    Loève, M.: Probability Theory. Princeton: D. Van Nostrand 1963Google Scholar
  13. 13.
    Lindenstrauss, J.: A short proof of Liapounoff's convexity theorem. J. Math. Mech. 15, 971–972 (1966)Google Scholar
  14. 14.
    Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces; Lect. Notes Math. no. 338. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  15. 15.
    Maharam, D.: On homogeneous measure algebras. Proc. Natl. Acad. Sci USA 28, 108–111 (1942)Google Scholar
  16. 16.
    Rosenthal, H.P.: On the span in L pof sequences of independent random variables # II. Proc. 6th Berkeley Symposium on Math. Stat. and Probab. 2, 149–167 (1972)Google Scholar
  17. 17.
    Rosenthal, H.P.: On subspaces of L p. Ann. Math. 97, 344–373 (1973)Google Scholar
  18. 18.
    Rosenthal, H.P.: On a theorem of J.L. Krivine concerning block finite-representability of l pin general Banach spaces. J. Func. Anal. 28, 197–225 (1978)Google Scholar
  19. 19.
    Strassen, V.: The existence of probability measures with given marginals. Ann. Math. Stat 36, 423–429 (1965)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Istvan Berkes
    • 1
    • 2
  • Haskell P. Rosenthal
    • 1
    • 2
  1. 1.Department of MathematicsHungarian Academy of SciencesBudapestHungary
  2. 2.Department of MathematicsThe University of TexasAustinUSA

Personalised recommendations