Arithmetic and other properties of certain Delphic semigroups. I

  • Rollo Davidson


Some aspects of Delphic semigroups in general — in particular, the idea of an hereditary subsemigroup, which has many uses in connexion with Delphic semigroups — are first treated. After that, attention is directed to the arithmetic of ℛ+, the semigroup of positive renewal sequences. In a Delphic semigroup the aboriginal elements are the ‘simples’ and the members of ‘I0’: a class of simples of ℛ+ is constructed and the simples are shown to be residual. I0 is explicitly identified, and this leads to a canonical factorization of ℛ+. The properties of division in ℛ+ are discussed.


Stochastic Process Probability Theory Mathematical Biology Aboriginal Element Canonical Factorization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bourbaki, N.: éléments de mathématique: Intégration. Paris: Hermann 1956.Google Scholar
  2. 2.
    čech, E.: Topological spaces. Prague: Academia 1966.Google Scholar
  3. 3.
    Dugué, D.: Arithmétique des lois de probabilités. Mémorial des Sciences Mathématiques 137. Paris: Gauthier-Villars 1957.Google Scholar
  4. 4.
    Hagen, Revd. J.: On division of series. Amer. J. Math. 5, 236–237 (1882).Google Scholar
  5. 5.
    Kendall, D. G.: Renewal sequences and their arithmetic. Symposium on probabilistic methods in analysis. Lecture Notes in Mathematics No. 31, 147–175. Berlin-Heidelberg-New York: Springer 1967.Google Scholar
  6. 6.
    —: Delphic semigroups. Bull. Amer. math. Soc. 73, (1), 120–121 (1967).Google Scholar
  7. 7.
    —: Delphic semigroups, infinitely divisible regenerative phenomena, and the arithmetic of p-functions. Z. Wahrscheinlichkeitstheorie verw. Geb. 9, 163–195 (1968).Google Scholar
  8. 8.
    Kingman, J. F. C.: The stochastic theory of regenerative events. Z. Wahrscheinlichkeitstheorie verw. Geb. 2, 180–224 (1964).Google Scholar
  9. 9.
    Markushevich, A. I.: Theory of functions of a complex variable, vol. 1. Englewood Cliffs, N. J.: Prentice-Hall 1965.Google Scholar
  10. 10.
    Parthasarathy, K. R., R. Ranga Rao, and S. R. S. Varadhan: On the category of indecomposable distributions on topological groups. Trans. Amer. math. Soc. 102, 200–217 (1962).Google Scholar
  11. 11.
    Titchmarsh, E. C.: The theory of functions. Oxford: University Press 1932.Google Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • Rollo Davidson
    • 1
  1. 1.Trinity CollegeCambridgeGreat Britain

Personalised recommendations