Advertisement

On invariant measures for operators

  • David W. Dean
  • Louis Sucheston
Article

Keywords

Stochastic Process Probability Theory Invariant Measure Mathematical Biology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    Calderón, Alberto: Sur les mesures invariantes. C. r. Acad. Sci. Paris 240, 1960–1962 (1955).Google Scholar
  2. [2]
    Chacon, R. V.: The influence of the dissipative part of a general Markov process. Proc. Amer. math. Soc. 11, 957–961 (1960).Google Scholar
  3. [3]
    —, and D. S. Ornstein: A general ergodic theorem. Illinois J. Math. 4 153–160 (1960).Google Scholar
  4. [4]
    Dowker, Y. N.: Finite and σ-finite measures. Ann. of Math., II. Ser. 54, 595–608 (1951).Google Scholar
  5. [5]
    —: On measurable transformations in finite measure spaces. Ann. of Math. 62, 504–516 (1955).Google Scholar
  6. [6]
    —: Sur les applications mesurables. C. r. Acad. Sci. Paris 242, 329–331 (1956).Google Scholar
  7. [7]
    Dunford, Nelson, and Jacob T. Schwartz: Linear operators I. New York: 1958.Google Scholar
  8. [8]
    Feldman, J.: Subinvariant measures for Markoff operators. Duke math. J. 29, 71–98 (1962).Google Scholar
  9. [9]
    Garsia, A.: A simple proof of E. Hopf's maximal ergodic theorem. J. Math. Mech. 14, 381–382 (1965).Google Scholar
  10. [10]
    Hajian, A., and S. Kakutani: Weakly wandering sets and invariant measures. Trans. Amer. math. Soc. 110, 136–151 (1964).Google Scholar
  11. [11]
    Halmos, P. R.: Lectures on ergodic theory. Tokyo: The Mathematical Society of Japan 1956.Google Scholar
  12. [12]
    Hope, E.: Theory of measure and invariant integrals. Trans. Amer. math. Soc. 34, 373–393 (1932).Google Scholar
  13. [13]
    —: The general temporally discrete Markoff process. J. rat. Mech. Analysis 3, 13–45 (1954).Google Scholar
  14. [14]
    Ito, Y.: Invariant measures for Markov processes. Trans. Amer. math. Soc. 110, 152–184 (1964).Google Scholar
  15. [15]
    Lorentz, G. G.: A contribution to the theory of divergent sequences. Acta math. 80, 167–190 (1948).Google Scholar
  16. [16]
    Neveu, J.: Bases mathématiques du calcul des probabilités. Paris: Masson 1964.Google Scholar
  17. [17]
    —: Sur l'existence de mesures invariantes en theorie ergodique. C. r. Acad. Sci. Paris 260, 393–396 (1965).Google Scholar
  18. [18]
    Sucheston, L.: An ergodic application of almost convergent sequences. Duke math. J. 30, 417–422 (1963).Google Scholar
  19. [19]
    —: On existence of finite invariant measures. Math. Z. 86, 327–336 (1964).Google Scholar
  20. [20]
    Yosida, K., and E. Hewitt: Finitely additive measures. Trans. Amer. math. Soc. 72, 46–66 (1952).Google Scholar

Copyright information

© Springer-Verlag 1966

Authors and Affiliations

  • David W. Dean
    • 1
  • Louis Sucheston
    • 1
  1. 1.Department of MathematicsThe Ohio State UniversityColumbusUSA

Personalised recommendations