The central limit theorem for summability methods of I.I.D. random variables

  • Paul Embrechts
  • Makoto Maejima


Stochastic Process Probability Theory Limit Theorem Mathematical Biology Central Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Azlarov, T.A., Meredov, B.: Some estimates in the limit theorem for the Abel summability of random variables. (In Russian.) Izv. Akad. Nauk UzSSR Ser. Fiz.-Mat. Nauk 1977, nℴ 5, 7–15 (1977)Google Scholar
  2. 2.
    Bikelis, A.: Estimates of the remainder term in the central limit theorem. (In Russian.) Litovsk. Mat. Sb. 6, 323–346 (1966)Google Scholar
  3. 3.
    Bikelis, A.: On the accuracy of Gaussian approximation to the distribution of sums of independent identically distributed random variables. (In Russian.) Litovsk. Mat. Sb. 11, 237–240 (1971)Google Scholar
  4. 4.
    Bikelis, A.: Asymptotic expansions of sums of independent m-lattice random vectors. (In Russian.) Litovsk. Mat. Sb. 12, 188–189 (1972)Google Scholar
  5. 5.
    Bingham, N.H.: Tauberian theorems and the central limit theorem. Ann. Probability 9, 221–231 (1981)Google Scholar
  6. 6.
    Bingham, N.H.: On Tauberian theorems in probability theory. Preprint, Westfield Coll. Univ. of London (1982)Google Scholar
  7. 7.
    Chow, Y.S.: Delayed sums and Borel summability of independent, identically distributed random variables. Bull. Inst. Math. Acad. Sinica 1, 207–220 (1973)Google Scholar
  8. 8.
    Feller, W.: An Introduction to Probability Theory and Its Applications. Vol. 1. 3rd ed. New York: Wiley 1968Google Scholar
  9. 9.
    Gerber, H.U.: The discounted central limit theorem and its Berry-Esséen analogue. Ann. Math. Statist. 42, 389–392 (1971)Google Scholar
  10. 10.
    Hardy, G.H.: Divergent Series. Oxford University Press 1967Google Scholar
  11. 11.
    Heyde, C.C.: A nonuniform bound on convergence to normality. Ann. Probability 3, 903–907 (1975)Google Scholar
  12. 12.
    Lai, T.L.: Summability methods for independent, identically distributed random variables. Proc. Amer. Math. Soc. 45, 253–261 (1974)Google Scholar
  13. 13.
    Maejima, M.: A nonuniform estimate in the central limit theorem for m-dependent random variables. Keio Engrg. Rep. 31, 15–20 (1978)Google Scholar
  14. 14.
    Maejima, M.: Nonuniform estimates in the central limit theorem. Yokohama Math. J. 26, 137–149 (1978)Google Scholar
  15. 15.
    Maejima, M.: A note on the nonuniform rate of convergence to normality. Yokohama Math. J. 28, 97–106 (1980)Google Scholar
  16. 16.
    Osipov, L.V.: Refinement of Lindeberg's theorem. Theory Probability Appl. 11, 299–302 (1966)Google Scholar
  17. 17.
    Petrov, V.V.: Sums of Independent Random Variables. Berlin-Heidelberg-New York: Springer 1975Google Scholar
  18. 18.
    Pruitt, W.E.: Summability of independent random variables. J. Math. and Mech. 15, 769–776 (1966)Google Scholar
  19. 19.
    Szegö, G.: Orthogonal Polynomials. Amer. Math. Soc. Colloquim Publications, Vol. 23, 1967Google Scholar
  20. 20.
    Watson, G.N.: The Theory of Bessel Functions. 2nd ed. Cambridge University Press 1966Google Scholar
  21. 21.
    Zeller, K., Beekmann, W.: Theorie der Limitierungsverfahren. Berlin-Heidelberg-New York: Springer 1970Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Paul Embrechts
    • 1
  • Makoto Maejima
    • 2
  1. 1.Department of MathematicsImperial CollegeLondonUK
  2. 2.Department of MathematicsKeio UniversityYokohamaJapan

Personalised recommendations