Advertisement

Finitary coding of Markov random fields

  • Andres del Junco
Article

Summary

There exists a finitary code from any stationary ergodic Markov random field to any i.i.d. random field of strictly lower entropy.

Keywords

Entropy Stochastic Process Probability Theory Random Field Mathematical Biology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akcoglu, M., del Junco, A., Rahe, M.: Finitary codes between Markov processes. Z. Wahrscheinlichkeitstheorie verw. Gebiete 47, 305–314 (1979)Google Scholar
  2. 2.
    Conze, J.P.: Entropie d'un groupe abelien de transformations. Z. Wahrscheinlichkeitstheorie verw. Gebiete 25, 11–30 (1972)Google Scholar
  3. 3.
    Keane, M.: Coding problems in ergodic theory. Proc. International Conference Math. Phys. Camerino, Italy (1974)Google Scholar
  4. 4.
    Keane, M., Smorodinsky, M.: A class of finitary codes. Israel J. Math. 26, 353–371 (1977)Google Scholar
  5. 5.
    Keane, M., Smorodinsky, M.: Bernouilli shifts of the same entropy are finitarily isomorphic, preprintGoogle Scholar
  6. 6.
    Keane, M., Smorodinsky, M.: The finitary isomorphism theorem for Markov shifts. Preprint, also Bull. Amer. Math. Soc. (New Series) 1, 436–438 (1979)Google Scholar
  7. 7.
    diLiberto, F., Gallavotti, G., Russo, L.: Markov processes, Bernoulli schemes and Ising model. Commun. Math. Phys. 33, 259–282 (1973)Google Scholar
  8. 8.
    Spitzer, F.: Markov random fields and Gibbs ensembles. Amer. Math. Monthly 78, 142–154 (1971)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Andres del Junco
    • 1
  1. 1.Dept. of MathematicsThe Ohio State UniversityColumbusUSA

Personalised recommendations