Advertisement

Regular birth and death times

  • A. O. Pittenger
  • M. J. Sharpe
Article
  • 34 Downloads

Keywords

Stochastic Process Probability Theory Mathematical Biology Death Time Regular Birth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blumenthal, R.M., Getoor, R.K.: Markov Processes and Potential Theory. New York: Academic Press, 1968Google Scholar
  2. 2.
    Dellacherie, C., Meyer, P.-A.: Probabilités et Potentiel. Paris: Hermann, 1975Google Scholar
  3. 3.
    Getoor, R.K.: On the construction of kernels. Strasbourg Seminar IX. Lecture Notes 465, 443–463. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  4. 4.
    Getoor, R.K., Sharpe, M.J.: The Markov property at co-optional times. Z. Wahrscheinlichkeitstheorie verw. Gebiete 48, 201–211 (1979)Google Scholar
  5. 5.
    Getoor, R.K., Sharpe, M.J.: Markov properties of a Markov process. Z. Wahrscheinlichkeitstheorie verw. Gebiete 55, 313–330 (1981)Google Scholar
  6. 6.
    Jacobsen, M., Pitman, J.W.: Birth, death and conditioning of Markov chains. Ann. Prob. 5, 430–450 (1977)Google Scholar
  7. 7.
    Jacobsen, M.: Markov chains: birth and death times with conditional independence. To appearGoogle Scholar
  8. 8.
    Maisonneuve, B., Meyer, P.-A.: Ensembles aleatoires Markoviens homogènes I. Strasbourg Seminar VIII. Lecture Notes 381, 176–190. Berlin-Heidelberg-New York: Springer 1974Google Scholar
  9. 9.
    Meyer, P.-A., Smythe, R., Walsh, J.B.: Birth and death of Markov processes. Proc. 6th Berkeley Sympos. Math. Statist. Probab. Vol. III, 295–305, University of California Press (1972)Google Scholar
  10. 10.
    Pittenger, A.O., Shih, C.T.: Coterminal families and the strong Markov property. Trans. Amer. Math. Soc. 182, 1–42 (1973)Google Scholar
  11. 11.
    Pittenger, A.O.: Regular birth times for Markov processes. [To appear in Ann. Prob.]Google Scholar
  12. 12.
    Sharpe, M.J.: Killing times for Markov processes. [To appear)Google Scholar
  13. 13.
    Sharpe, M.J.: General Theory of Markov Processes. Forthcoming bookGoogle Scholar
  14. 14.
    Sharpe, M.J.: Homogeneous extensions of random measures. Strasbourg Seminar IX, Lecture Notes 465, 496–514. Berlin-Heidelberg-New York: Springer 1975Google Scholar
  15. 15.
    Walsh, J.B.: The perfection of multiplicative functionals. Strasbourg Seminar VI. Lecture Notes 258, 233–242. Berlin-Heidelberg-New York: Springer 1972Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • A. O. Pittenger
    • 1
    • 2
  • M. J. Sharpe
    • 1
    • 2
  1. 1.University of MarylandBaltimore County
  2. 2.Mathematics Dept.University of California at San DiegoLa JollaUSA

Personalised recommendations