Characterization by truncated moments and its application to Pearson-type distributions

  • W. Glänzel
  • A. Teles
  • A. Schubert
Article

Summary

A characterization theorem based on the proportional relation between two truncated moments is proved for both continuous and discrete distributions. The results are applied for characterizing distributions of Pearson's system and its discrete analogon.

Keywords

Real Function Monotonic Function Discrete Distribution Discrete Random Variable Continuous Random Variable 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, W.-C: On the Weak Form of Zipf's Law. J. Appl. Probability 17, 611–622 (1980)CrossRefMATHGoogle Scholar
  2. Galambos, J., Kotz, S.: Characterizations of Probability Distributions. Lecture Notes in Mathematics 675. Berlin-Heidelberg-New York: Springer 1978Google Scholar
  3. Irwin, J.O.: The Generalized Waring Distribution; Parts I, II, III. J.R. Statist. Soc. A 138, 18–31, 204–227, 374–384 (1975)MathSciNetCrossRefGoogle Scholar
  4. Kemp, C.D., Kemp, A.W.: Generalized Hypergeometric Distributions. J.R. Statist. Soc. B 18, 202–211 (1956)MathSciNetMATHGoogle Scholar
  5. Kotz, S., Shanbhag, D.N.: Some New Approaches to Probability Distributions. Adv. Appl. Probability 12, 903–921 (1980)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • W. Glänzel
    • 1
  • A. Teles
    • 1
  • A. Schubert
    • 1
  1. 1.Department for Informatics and Science AnalysisLibrary of the Hungarian Academy of SciencesBudapestHungary

Personalised recommendations