A note on limit theorems in percolation

  • Gunnar Brånvall
Article
  • 31 Downloads

Summary

Laws of large numbers and central limit theorems are proved for some cluster functions, e.g. the number of points in a large box which are (+) connected to its boundary or the number of (+) clusters in the box.

Keywords

Stochastic Process Probability Theory Limit Theorem Mathematical Biology Central Limit 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Billingsley, P.: Convergence of Probability Measures. New York: Wiley 1968Google Scholar
  2. 2.
    Dean, P.: A new Monte Carlo method for percolation problems on a lattice. Proc. Cambridge Phil. Soc. 59, 397–410 (1963)Google Scholar
  3. 3.
    Essam, J.W.: Percolation and cluster size. Phase Transitions and Critical Phenomena, Volume 2, C. Domb and M.S. Green, editors. New York: Academic Press 1972Google Scholar
  4. 4.
    Grimmett, G.R.: On the number of clusters in the percolation model. J. London Math. Soc., Ser. 2, 13, 346–350 (1976)Google Scholar
  5. 5.
    Ibragimov, I.A., Linnik, Yu.V.: Independent and Stationary Sequences of Random Variables. Groningen, Netherlands: Wolters-Nordhoff 1971Google Scholar
  6. 6.
    Pitt, H.R.: Some generalizations of the ergodic theorem. Proc. Cambridge Phil. Soc. 38, 325–343 (1942)Google Scholar
  7. 7.
    Russo, L.: A note on percolation. Z. Wahrscheinlichkeitstheorie verw. Gebiete 43, 39–48 (1978)Google Scholar
  8. 8.
    Seymour, P.D., Welsh, D.J.A.: Percolation probabilities on the square lattice. Ann. discrete Math. 3, 227–245 (1978)Google Scholar
  9. 9.
    Smythe, R.T., Wierman, John C.: First Passage Percolation on the Square lattice. Lecture Notes in Math. 671. Berlin-Heidelberg-New York: Springer 1978Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Gunnar Brånvall
    • 1
  1. 1.Dept. of MathematicsUppsala UniversityUppsalaSweden

Personalised recommendations