Skip to main content
Log in

Dynamic thermomechanical properties of composites based on thermoelastic wave scattering

Bestimmung der dynamischen thermodynamischen Eigenschaften von Verbundwerkstoffen aus der thermoelastischen Wellenstreuung

  • Originals
  • Published:
Ingenieur-Archiv Aims and scope Submit manuscript

Summary

The dynamic thermomechanical properties of a macroscopically homogeneous and isotropie particle composite are determined by means of an analytical model based on the theory of thermoelastic wave scattering. According to the present method, the energies of the incident and scattered waves are determined in terms of the dynamic stress/strain fields and heat flux/temperature fields, both for an incident shear wave and for an incident one consisting of a linear combination of a pressure and a thermal wave. The basic assumption is that there is no interaction between the respective fields of neighbouring inclusions, i.e. a low volume concentration of the particles and also a wave length of the incident field much greater than the diameter of the smallest sphere which can surround the inclusion. The model is applied to a particle composite containing rigid spherical, thermally insulated inclusions. Results for a wide range of the involved parameters are presented.

Übersicht

Die dynamischen thermomechanischen Eigenschaften makroskopisch homogener und isotroper Partikel-Verbundwerkstoffe werden mit Hilfe eines Modells, das auf der Theorie der Streuung thermoelastischer Wellen beruht, bestimmt. Die Energien der einfallenden und gestreuten Wellen werden ausgedrückt durch die dynamischen Spannungs-Verzerrungsfelder und Wärmefluß-Temperaturfelder, und zwar jeweils für eine einfallende Scherwelle uhd eine Linearkombination aus einfallender thermischer und Druckwelle. Grundlegend ist die Annahme, daß keine Wechselwirkung zwischen den betreffenden Feldern benachbarter Einschlüsse vorhanden ist, d. h. eine geringe Teilchenkonzentration und eine Länge der einfallenden Wellen, die sehr viel größer ist als der Durchmesser der kleinstmöglichen Kugel um den Einschluß. Das Modell wird auf einen Verbund mit starren und wärmeisolierten sphärischen Einschlüssen angewandt und mit Ergebnissen für einen weiteren Parametersatzbereich demonstriert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Riot, M.: Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27 (1956) 240–253

    Google Scholar 

  2. Chamis, C. C.; Sendeckyj, G. P.: Critique of Theories predicting thermoelastic properties of fibrous composites. J. Composite Materials 2 (1968) 332–358

    Google Scholar 

  3. Dassios, G.; Kostopoulos, V.: The scattering amplitudes and cross section in the theory of thermoelasticity. SIAM J. Appl. Math. 48, No. 1 (1988) 79–98

    Google Scholar 

  4. Dassios, G.: Kostopoulos, V.: On Rayleigh expansions in thermoelastic scattering. SIAM J. Appl. Math. (in press)

  5. Hashin, Z.: Theory of mechanical heterogeneous media (Review article). Appl. Mech. Rev. 17 (1964) 1–8

    Google Scholar 

  6. Hashin, Z.: On elastic behaviour of fiber-reinforced materials of arbitrary transverse phase geometry. J. Mech. Phys. Solids 13 (1965) 119–134

    Google Scholar 

  7. King, R.; Wu, T.: Scattering and diffraction of waves pp. 140–205. Cambridge: University Press 1959

    Google Scholar 

  8. Nowacki, W.: Dynamic problems of thermoelasticity pp. 101–134. Leyden: Noordhoff 1975

    Google Scholar 

  9. Paipetis, S. A.; Grootenhuis, P.: The dynamic properties of particle reinforced viscoelastic composites. Fibre Science Technol. 12 (1979) 377–393

    Google Scholar 

  10. Paipetis, S. A.; Grootenhuis, P.: The dynamic properties of fibre reinforced viscoelastic composites. Fibre Science Technol. 12 (1979) 353–376

    Google Scholar 

  11. Schapery, R. A.: Thermal-expansion coefficient of composite materials based on energy principles. J. Composite Materials 2 (1968) 380–404

    Google Scholar 

  12. Van Fo Fy, G. A.: Elastic constants and thermal expansion of certain bodies with inhomogeneous regular structure. Soviet Physics/Doklady 11 (1966) 176–182

    Google Scholar 

  13. Waterman, P.: Matrix theory of elastic wave scattering. J. Acoust. Soc. Am. 60 (1976) 567–580

    Google Scholar 

  14. Waterman, P.: Matrix theory of elastic wave scattering II: A new conservation law. J. Acoust. Soc. Am. 63 (1978) 1320–1325

    Google Scholar 

  15. Holliday, L.; Robinson, J. D.: The thermal expansion properties of polymer composites. In: Richardson, M. O. W. (ed.): Polymer engineering composites, pp. 263–316. London: Applied Science Publishers Ltd. 1977

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostopoulos, V., Vellios, L. & Paipetis, S.A. Dynamic thermomechanical properties of composites based on thermoelastic wave scattering. Ing. arch 60, 431–443 (1990). https://doi.org/10.1007/BF00531254

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00531254

Keywords

Navigation