Skip to main content
Log in

Attitude stability of a tethered satellite in locked rotation

Richtungstabilität eines gravitationsstabilisierten Satelliten mit Pendelmassen

  • Originals
  • Published:
Ingenieur-Archiv Aims and scope Submit manuscript

Summary

The linear stability of the attitude of a tethered satellite system, consisting of an asymmetric satellite with two equal tethered masses arranged vertically, is studied. The differential equations of motion are established, the attitude stability conditions are found, and then entered into a Magnus triangle. It is concluded that a tether parameterΔ has a significant effect on the satellite's attitude stability. By increasing the value of Δ, the stable regions in the Magnus triangle grow, until they cover more than half of its area, and then decline to exactly one half.

Übersicht

Die lineare Stabilität der Orientierung, d. h. der Winkellage, eines Systems aus einem starren Hauptsatelliten mit zwei im Schwerefeld vertikal an Seilen befestigten Punktmassen wird untersucht. Die Bewegungsgleichungen werden hergeleitet, deren Stabilitätsgrenzen berechnet und ins Magnussche Formdreieck eingetragen. Es wird gezeigt, daß der Seilparameter Δ einen entscheidenden Einfluß auf das Stabilitätsverhalten hat. Je größer der Seilparameter ist, desto grïoßer werden die Stabilitätsgebiete, bis sie mehr als die Hälfte des Magnusschen Formdreiecks ausmachen, um bei weiterem Ansteigen dann auf genau die Hälfte zurückgehen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ionasecu, R.; Penzo, P. A.: Innovative space tethers. Spaceflight 30 (1988) 200–208

    Google Scholar 

  2. Vallerani, E.; Bevilacqua, F.: New applications of tethered satellites: An Italian perspective. In: Bainum, P. M.; Bekey, I.; Guerriero, L.; Penzo, P. A. (eds.): Advances in the astronautical sciences, Vol. 62: Tethers in space, pp. 63–70. San Diego: Univelt 1987

    Google Scholar 

  3. Rimrott, F. P. J.: Introductory attitude dynamics. New York: Springer 1988

    Google Scholar 

  4. Arnold, D. A.: The Behavior of long tethers in space. In: Bainum, P. M.; Bekey, L; Guerriero, L.; Penzo, P. A. (eds.): Advances in the astronautical sciences, Vol. 62: Tethers in space, pp. 35–50. San Diego: Univelt 1987

    Google Scholar 

  5. Bevilacqua, F.; Viardo, S.; Loria, A.: Space station gravity gradient stabilization by tethers. In: Proc. second. international conference on tethers in space, pp. 63–88, Venezia 1987

  6. Chetayef, N. G.: The stability of motion. London: Pergamon Press 1961

    Google Scholar 

  7. Penzo, P. A.: A survey of tether applications to planetary exploration. In: Bainum, P. M.; Bekey, I.; Guerriero, L.; Penzo, P. A. (eds.): Advances in the astronautical sciences, Vol. 62: Tethers in space, pp. 71–88. San Diego: Univelt 1987

    Google Scholar 

  8. Rimrott, F. P. J.: Introductory orbit dynamics. Braunschweig: Vieweg 1989

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rimrott, F.P.J., Pan, R. Attitude stability of a tethered satellite in locked rotation. Ing. arch 60, 419–430 (1990). https://doi.org/10.1007/BF00531253

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00531253

Keywords

Navigation