Theoretica chimica acta

, Volume 70, Issue 3, pp 165–188 | Cite as

Relativistic Gaussian basis sets for the atoms hydrogen to neon

  • Franz Mark
Article

Abstract

Gaussian basis sets for use in relativistic molecular calculations are developed for atoms and ions with one to ten electrons. A relativistic radial wavefunction coupled to an angular function of l-symmetry is expanded into a linear combination of spherical Gaussians of the form r l exp (−αr2). One set of basis functions is used for all large and small components of the same angular symmetry. The expansion coefficients and the orbital exponents have been determined by minimizing the integral over the weighted square of the deviation between the Dirac or Dirac-Fock radial wavefunctions and their analytical approximations. The basis sets calculated with a weighting function inversely proportional to the radial distance are found to have numerical constants very similar to those of their energy-optimized non-relativistic counterparts. Atomic sets are formed by combining l-subsets. The results of relativistic and non-relativistic calculations based on these sets are analyzed with respect to different criteria, e.g. their ability to reproduce the relativistic total energy contribution and the spin-orbit splitting. Contraction schemes are proposed.

Key words

Relativistic Gaussian basis sets Dirac-Fock calculations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Roothan CCJ (1951) Rev Mod Phys 23:69Google Scholar
  2. 2.
    Poirier R, Kari R, Csizmadia IG (1985) Handbook of Gaussian basis sets. Physical Sciences Data 24. Elsevier, AmsterdamGoogle Scholar
  3. 3.
    Huzinaga S, Andzelm J, Klobukowski M, Radzio-Andzelm E, Sakai Y, Tatewaki H (1984) Gaussian basis sets for molecular calculations. Physical Sciences Data 16. Elsevier, AmsterdamGoogle Scholar
  4. 4.
    Clementi E, Roetti C (1974) Atomic Data and Nuclear Data Tables 14:177Google Scholar
  5. 5.
    Dunning Jr TH, Hay PJ (1977) Mod Theor Chem 3:1Google Scholar
  6. 6.
    Ahlrichs R, Taylor PR (1981) J Chim Phys 78:315Google Scholar
  7. 7.
    Malli G, Oreg J (1980) Chem Phys Letters 69:313Google Scholar
  8. 8.
    Matsuoka O, Suzuki N, Aoyama T, Malli G (1980) J Chem Phys 73:1320Google Scholar
  9. 9.
    Aoyama T, Yamakawa H, Matsuoka O (1980) J Chem Phys 73:1329Google Scholar
  10. 10.
    Mark F, Lischka H, Rosicky F (1980) Chem Phys Letters 71:507Google Scholar
  11. 11.
    Mark F, Rosicky F (1980) Chem Phys Letters 74:562; (1980) Erratum, ibidem 76:407Google Scholar
  12. 12.
    Wallmeier H, Kutzelnigg W (1981) Chem Phys Letters 78:341Google Scholar
  13. 23.
    Lee YS, McLean AD (1982) J Chem Phys 76:735Google Scholar
  14. 14.
    McLean AD, Lee YS (1982) In: Carbo R (ed) Current aspects of quantum chemistry 1981. Elsevier Amsterdam, p 219Google Scholar
  15. 15.
    Mark F, Schwarz WHE (1982) Phys Rev Letters 48:673Google Scholar
  16. 16.
    Wallmeier H, Kutzelnigg W (1983) Phys Rev 28:3092Google Scholar
  17. 17.
    Schwarz WHE, Chu SY, Mark F (1983) Mol Phys 50:603Google Scholar
  18. 18.
    Mark F, Marian C, Schwarz WHE (1984) Mol Phys 53:535Google Scholar
  19. 19.
    Aerts PJC, Nieuwpoort WC (1986) Int J Quantum Chem Quant Chem Symp 19:267Google Scholar
  20. 20.
    Kim YK (1967) Phys Rev 154:17Google Scholar
  21. 21.
    Brown GE, Ravenhall DG (1951) Proc Roy Soc (Lond) A208:552Google Scholar
  22. 22.
    Sucher J (1980) Phys Rev A22:348Google Scholar
  23. 23.
    Mittleman MH (1981) Phys Rev A24:1167Google Scholar
  24. 24.
    Kagawa T (1975) Phys Rev A12:2245; (1980) ibidem A22:2340Google Scholar
  25. 25.
    Drake GWF, Goldman SP (1981) Phys Rev A23:2093Google Scholar
  26. 26.
    Solliec F, Mijoule C, Leclercq JM (1982) Chem Phys Letters 85:190Google Scholar
  27. 27.
    Ishikawa Y, Binning Jr RC, Sando KM (1983) Chem Phys Lett 101:111Google Scholar
  28. 28.
    Dyall KG, Grant IP, Wilson S (1984) J Phys B17:1201Google Scholar
  29. 29.
    Ishikawa Y, Baretty R, Sando KM (1985) Chem Phys Letters 117:444Google Scholar
  30. 30.
    Kagawa T, Malli G (1985) Can J Chem 63:1550Google Scholar
  31. 31.
    Malli G (1979) Chem Phys Letters 68:529Google Scholar
  32. 32.
    Stanton RE, Havriliak S (1984) J Chem Phys 81:1910Google Scholar
  33. 33.
    Aerts PJC, Nieuwpoort WC (1985) Chem Phys Letters 113:165Google Scholar
  34. 34.
    Matsuoka O, Klobukowski M, Huzinaga S (1985) Chem Phys Letters 113:395Google Scholar
  35. 35.
    Ishikawa Y, Baretty R, Binning Jr RC (1985) Chem Phys Letters 121:130Google Scholar
  36. 36.
    Kutzelnigg W (1984) Int J Quantum Chem 25:107Google Scholar
  37. 37.
    Mark F (1985) Schriftenreihe des Max-Planck-Instituts für Strahlenchemie Nr 24Google Scholar
  38. 38.
    Grant IP (1970) Adv Physics 19:747Google Scholar
  39. 39.
    Bethe HA, Salpeter EE (1957) Quantum mechanics of one- and two-electron systems. In: Handbuch der Physik, vol 35. Springer, Berlin-Göttingen-Heidelberg, p 88Google Scholar
  40. 40.
    Desclaux JP (1975) Comput Phys Commun 9:31Google Scholar
  41. 41.
    Desclaux JP, Moser CM, Verhaegen G (1971) J Phys B4:296Google Scholar
  42. 42.
    Tucker TC, Roberts LD, Nestor Jr CW, Carlson TA, Malik FB (1968) Phys Rev 174:118; (1969); ibidem 178:998Google Scholar
  43. 43.
    Nestor Jr CW, Carlson TA, Tucker TC, Roberts LD, Malik FB, Froese C (1966) ORNL-4027, Oak Ridge National Laboratory, Oak Ridge, TennesseeGoogle Scholar
  44. 44.
    Mann JB, Waber JT (1970) J Chem Phys 53:2397Google Scholar
  45. 45.
    Hill DL (1957) In: Handbuch der Physik, vol 39. Springer, Berlin-Göttingen-Heidelberg, p 178Google Scholar
  46. 46.
    Shavitt I (1963) Methods in computational physics 2:1Google Scholar
  47. 47.
    O-ohata K, Taketa H, Huzinaga S (1966) Proc Phys Soc Japan 21:2306Google Scholar
  48. 48.
    Stewart RF (1969) J Chem Phys 50:2485Google Scholar
  49. 49.
    Hehre WJ, Stewart RF, Pople JA (1968) Symp Faraday Soc 2:15Google Scholar
  50. 50.
    Bardo RD, Ruedenberg K (1973) J Chem Phys 59:5956; (1973) ibidem 59:5966Google Scholar
  51. 51.
    Ruedenberg K, Raffenetti RC, Bardo RD (1973) In: Energy, structure and reactivity. Proceedings of the 1972 Boulder Conference on Theoretical Chemistry. Wiley, New York, p 164Google Scholar
  52. 52.
    Huzinaga S (1965) J Chem Phys 42:1293Google Scholar
  53. 53.
    Froese-Fischer C (1977) The Hartree-Fock method for atoms. Wiley, New YorkGoogle Scholar
  54. 54.
    Burke VM, Grant IP (1967) Proc Phys Soc 90:297Google Scholar
  55. 55.
    Mark F, Schwarz WHE: in preparationGoogle Scholar
  56. 56.
    Laaksonen L, Grant IP (1984) Chem Phys Letters 112:157Google Scholar
  57. 57.
    Koch R, Mark F: in preparationGoogle Scholar
  58. 58.
    van Duijneveldt FB (1971) IBM Report RJ 945Google Scholar
  59. 59.
    Driessler F, Ahlrichs R (1973) Chem Phys Letters 23:571Google Scholar
  60. 60.
    Malli G (1981) Chem Phys Letters 78:578Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Franz Mark
    • 1
  1. 1.Max-Planck-Institut für StrahlenchemieMülheim a.d. RuhrFederal Republic of Germany

Personalised recommendations