Theoretica chimica acta

, Volume 70, Issue 1, pp 25–34 | Cite as

Aromaticity of annulenes and annulene ions with 4v+2 electrons from the viewpoint of the theory of Hartree-Fock instabilities

  • Peter Karadakov
  • Obis Casta¯no
Article

Abstract

The connection between the aromaticity of annulenes and annulene ions with 4v+2 π-electrons and the stability of the closed-shell restricted Hartree-Fock (RHF) solutions for these systems is discussed in the framework of the PPP-approximation. It is shown that the tendency towards an uniform electron density distribution in aromatic cycles is paralleled by the stability properties of the corresponding closed-shell RHF solutions. The stability investigations are demonstrated to provide realistic estimates of the critical ring sizes at which Hückel's 4v+2 rule breaks down.

Key words

Aromaticity Annulenes Hartree-Fock instabilities 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hückel E (1931) Z Phys 70:204 (1932) ibid 76:628Google Scholar
  2. 2.
    Longuet-Higgins H C, Salem L (1960) Proc Roy Soc A257:445Google Scholar
  3. 3.
    Dewar MJS, Gleicher G J (1965) J Am Chem Soc 87:685Google Scholar
  4. 4.
    Figeys HP (1970) Tetrahedron 26:4615, 5225Google Scholar
  5. 5.
    Kruszewski J., Krygowski TM (1970) Tetrahedron Lett 319; Krygowski TM (1970) ibid 1311Google Scholar
  6. 6.
    Hess BA Jr, Schaad LJ (1971) J Am Chem Soc 93:305Google Scholar
  7. 7.
    Gutman I, Milun M, Trinajstič N (1972) Croat Chem Acta 44:207Google Scholar
  8. 8.
    Aihara JI (1975) Bull Chem Soc Jpn 48:517Google Scholar
  9. 9.
    Gutman I, Milun M, Trinajstič N (1977) Croat Chem Acta 49:441Google Scholar
  10. 10.
    Haddon RC, Haddon VR, Jackman LM (1971) Topics Curr Chem 16:103Google Scholar
  11. 11.
    Fratev F, Bonchev D, Enchev V (1980) Croat Chem Acta 53:545Google Scholar
  12. 12.
    Čížek J, Paldus J (1967) J Chem Phys 47:3976Google Scholar
  13. 13.
    Paldus J, Čížek J (1970) J Polymer Sci Part C 29:199Google Scholar
  14. 14.
    Paldus J, Čížek J (1970) Phys Rev A2, 2268Google Scholar
  15. 15.
    Mataga N, Nishimoto K (1957) Z Phys Chem (Frankfurt) 13:140Google Scholar
  16. 16.
    Parr RG (1963) The quantum theory of molecular electronic structure Benjamin, New York; Pariser R, Parr RG (1953) J Chem Phys 21:466. 767Google Scholar
  17. 17.
    Ruedenberg K (1961) J Chem Phys. 34:1861, 1878Google Scholar
  18. 18.
    Paldus J, Veillard A (1978) Mol Phys 35:445Google Scholar
  19. 19.
    Kondo J: Physica B 98:176Google Scholar
  20. 20.
    Fukutome H, Sasai M (1982) Prog Theor Phys 67:41Google Scholar
  21. 21.
    Toyota A, Tanaka T, Nakajima T (1976) Int J Quantum Chem 10:917; Toyota A, Nakajima T (1977) Theoret Chim Acta 53:297; Toyota A, Saito M, Nakajima T (1980) ibid 56:231Google Scholar
  22. 22.
    Benard M, Paldus (1980) J Chem Phys 72:6546Google Scholar
  23. 23.
    Karadakov, P, Casta¯no, O (1982) Z Naturforsch 37a:28Google Scholar
  24. 24.
    Paldus J, Chin E (1983) Int J Quantum Chem 24:373Google Scholar
  25. 25.
    Kertész M, Koller J, Azman A (1980) Int J Quantum Chem 18:645; Kertész M, Koller J, Azman A (1980) Int J Quantum Chem Symp 14:463Google Scholar
  26. 26.
    Glukhovtsev MN, Simkin B Ya, Minkin V I (1985) Usp Khimii (USSR) 54:86Google Scholar
  27. 27.
    Mayer I, Kertész M (1975) Int J Quantum Chem 9:527Google Scholar
  28. 28.
    Fukutome H (1981) Int J Quantum Chem 20:955Google Scholar
  29. 29.
    Karadakov P, Casta¯no O (1983) Int J Quantum Chem 24:453Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Peter Karadakov
    • 1
  • Obis Casta¯no
    • 2
  1. 1.Faculty of Chemistry of the Sofia State UniversitySofiaBulgaria
  2. 2.Institute of Organic ChemistryBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations