Theoretica chimica acta

, Volume 3, Issue 5, pp 458–464 | Cite as

Valence orbital ionization potentials from atomic spectral data

  • Harold Basch
  • Arlen Viste
  • Harry B. Gray


Average Energy of Configuration. Valence Orbital Ionization Potentials (VOIPs) are reported for the elements H through Kr in various configurations and for many states of ionization. For the lighter elements the isoelectronic series are fitted to a quadratic equation, VOIP (q)=Aq2 + Bq+C. The significance of the A, B, and C parameters is discussed.


Physical Chemistry Inorganic Chemistry Organic Chemistry Spectral Data Ionization Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Über die Konfiguration gemittelte Ionisierungsenergien der Valenzorbitale (VOIP's) werden für verschiedene Konfigurationen und Ionisierungsstufen der Elemente H bis Kr angegeben. Bei den leichteren Elementen werden die isoelektronischen Reihen durch Ausgleichsparabeln dargestellt, VOIP (q)=Aq2 + Bq+C (q = Ladung), und die Parameter A, B und C diskutiert.


Pour plusieurs configurations et états d'ionisation des éléments H jusqu'à Kr, nous présentons les potentiels d'ionisation, moyennes pour chaque configuration, des orbitales de valence (VOIPs). Pour les éléments légers, les séries isoélectroniques sont représentées par des équations VOIP (q)=Aq2 + Bq + C. Les paramètres A, B et C sont discutés.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Ballhauses, C. J., and H. B. Gray: “Molecular Orbital Theory”, New York: Benjamin 1964.Google Scholar
  2. [2]
    Basch, H., A. Viste, and H. B. Gray: J. chem. Physics, in press.Google Scholar
  3. [3]
    Baughan, E. C.: Trans. Faraday Soc. 57, 1863 (1961).Google Scholar
  4. [4]
    Burns, G.: J. chem. Physics 41, 1521 (1964).Google Scholar
  5. [5]
    Clementi, E., and D. L. Raimondi: J. chem. Physics 38, 2686 (1963).Google Scholar
  6. [6]
    —, and A. D. McLean: Physic. Rev. 133 A, 419 (1964).Google Scholar
  7. [7]
    —, and M. Yoshimine: Physic. Rev. 133 A, 1274 (1964).Google Scholar
  8. [8]
    Edlén, B.: J. chem. Physics 33, 98 (1960).Google Scholar
  9. [9]
    Glockler, G.: Physic. Rev. 46, 111 (1934).Google Scholar
  10. [10]
    Hinze, J., and H. H. Jaffé: J. Amer. chem. Soc. 84, 540 (1962).Google Scholar
  11. [11]
    — —: J. chem. Physics 38, 1834 (1963).Google Scholar
  12. [12]
    Johnson, H. R., and F. Rohrlich: J. chem. Physics 30, 1608 (1959).Google Scholar
  13. [13]
    Jørgensen, C. K.: “Orbitals in Atoms and Molecules”. New York: Academic Press 1962, p. 40.Google Scholar
  14. [14]
    Moffitt, W.: Ann. Repts. on Prog. Physics 17, 173 (1954).Google Scholar
  15. [15]
    Moore, C. E.: “Atomic Energy Levels”, National Bureau of Standards Circular 467, Volumes I, II, and III, 1949, 1952, 1958.Google Scholar
  16. [16]
    Peters, D.: J. chem. Soc. 1963, 2015.Google Scholar
  17. [17]
    Pritchard, H. O., and H. A. Skinner: J. chem. Physics 22, 1963 (1954).Google Scholar
  18. [18]
    Rohrlich, F.: Physic. Rev. 101, 69 (1956).Google Scholar
  19. [19]
    Slater, J. C.: Physic. Rev. 36, 57 (1930).Google Scholar
  20. [20]
    —: “Quantum Theory of Atomic Structure”. New York: McGraw-Hill, Volume I, 1960, Chapter 14 and Appendix 21a; Volume II, 1962, Appendix 22.Google Scholar
  21. [21]
    Viste, A., and H. B. Gray: Inorg. Chem. 3, 1113 (1964).Google Scholar
  22. [22]
    Wolfsberg, M. and L. Helmholz: J. chem. Physics 20, 837 (1952).Google Scholar

Copyright information

© Springer-Verlag 1965

Authors and Affiliations

  • Harold Basch
    • 1
  • Arlen Viste
    • 1
  • Harry B. Gray
    • 1
  1. 1.Department of ChemistryColumbia UniversityNew York

Personalised recommendations