Advertisement

Theoretica chimica acta

, Volume 8, Issue 5, pp 383–389 | Cite as

The use of improved atomic orbitals in the evaluation of zero-field splitting integrals

  • Diana Capello
  • Alberte Pullman
Commentationes

Abstract

The effect of improving the 2pz-atomic orbital representation on the values of molecular zero-field splitting integrals is assessed on the example of the two-center Coulomb integral involving the (r2−3z2)/r5 operator in the cases of nitrogen and carbon. The results suggest that the use of the classical Slater orbital or its Gaussian equivalent may be misleading.

Keywords

Nitrogen Physical Chemistry Inorganic Chemistry Organic Chemistry Atomic Orbital 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Zusammenfassung

Ein spezielles, bei der Berechnung der molekularen Nullfeldaufspaltung von Tripletts auftretendes Zweizentrenintegral wird in AbhÄngigkeit von der Güte der 2pz-Orbitale des Kohlenstoff- bzw. Stickstoffatoms untersucht. Offenbar sind die üblichen Slaterorbitale und deren Approximation durch Gau\funktionen ungeeignet.

Résumé

On a étudié l'effet de l'amélioration de la base d'orbitales atomiques 2pz sur les valeurs des intégrales qui interviennent dans le calcul de la séparation des niveaux d'un triplet moléculaire en l'absence de champ magnétique. L'utilisation de l'orbitale de Slater classique ou de son équivalent en Gaussienne peut conduire à des conclusions appréciablement erronées.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. 1.
    Hutchison, C. A. Jr., and B. W. Mangum: J. chem. Physics 29, 952 (1958); 34, 908 (1961).Google Scholar
  2. 2.
    Van der Waals, J. H., and M. S. de Groot: Mol. Physics 2, 333 (1959).Google Scholar
  3. 3.
    de Groot, H. S., and J. H. Van der Waals: Mol. Physics 3, 190 (1960).Google Scholar
  4. 4.
    Yager, W. A., E. Wasserman, and R. M. R. Cramer: J. chem. Physics 37, 1148 (1962).Google Scholar
  5. 5.
    de Groot, M. S., and J. H. Van der Waals: Physica 29, 1128 (1963).Google Scholar
  6. 6.
    Kottis, P., and R. Lefebvre: J. chem. Physics 39, 393 (1963).Google Scholar
  7. 7.
    — —: J. chem. Physics 41, 379 (1964).Google Scholar
  8. 8.
    Wasserman, E., L. C. Snyder, and W. A. Yager: J. chem. Physics 41, 1763 (1964).Google Scholar
  9. 9.
    Van Vleck, J. H.: Rev. modern Physics 23, 213 (1951).Google Scholar
  10. 10.
    For a review see Weissbluth, M.: Electron spin resonance in molecular triplet states. In Molecular Biophysics. Edited by Pullman, B., and M. Weissbluth. New York: Academic Press 1965.Google Scholar
  11. 11.
    Moffitt, W., and M. Gouterman: J. chem. Physics 30, 1107 (1959).Google Scholar
  12. 12.
    Gouterman, M.: J. chem. Physics 30, 1369 (1959).Google Scholar
  13. 13.
    Boorstein, S. A., and M. Gouterman: J. chem. Physics 39, 2443 (1963).Google Scholar
  14. 14.
    — —: J. chem. Physics 42, 3070 (1965).Google Scholar
  15. 15.
    Chiu, Y. N.: J. chem. Physics 39, 2736 (1963).Google Scholar
  16. 16.
    Godfrey, M., C. W. Kern, and M. Karplus: J. chem. Physics 44, 4459 (1966).Google Scholar
  17. 17.
    Amos, T., and L. C. Snyder: J. chem. Physics 43, 2146 (1965).Google Scholar
  18. 18.
    Van der Waals, J. H., and G. Ter Maten: Mol. Physics 8, 301 (1964).Google Scholar
  19. 19.
    Hutchison, C. A. Jr.: Symposium on The Molecular Triplet State, Beyrouth 1967, (Cambridge: University Press. In press). For a one-center integral, see also Higuchi, J.: J. chem. Physics 38, 1237 (1963).Google Scholar
  20. 20.
    Pullman, A.: The description of molecules by the method of molecular orbitals. In Molecular Biophysics. Edited by Pullman, B., and M. Weissbluth. New York: Academic Press 1965.Google Scholar
  21. 21.
    Geller, M.: J. chem. Physics 39, 853 (1963).Google Scholar
  22. 22.
    Boorstein, S. A., and M. Gouterman: J. chem. Physics 41, 2776 (1964).Google Scholar
  23. 23.
    Geller, M., and R. W. Griffith: J. chem. Physics 40, 2309 (1964).Google Scholar
  24. 24.
    Clementi, E., and D. L. Raimondi: J. chem. Physics 38, 2686 (1963).Google Scholar
  25. 25.
    —: J. chem. Physics 40, 1944 (1964).Google Scholar
  26. 26.
    —, C. C. J. Roothaan, and M. Yoshimine: Physic. Rev. 127, 1618, (1962).Google Scholar
  27. 27.
    Levy, B., and E. Kochanski: To be published.Google Scholar
  28. 28.
    Clementi, E.: Tables of atomic functions, suppl. to IBM J. Research and Development 9, 2 (1965), Table 45-01 and Table 01–03.Google Scholar
  29. 29.
    Herman, R. B.: J. chem. Physics 42, 1027 (1965).Google Scholar
  30. 30.
    Clementi, E., and A. Veillard: J. chem. Physics 44, 3050 (1966).Google Scholar
  31. 31.
    Britts, K., and J. L. Karle: Acta crystallogr. 22, 308 (1967).Google Scholar
  32. 32.
    Brinen, J. S., and M. K. Orloff: J. chem. Physics 45, 4747 (1966).Google Scholar

Copyright information

© Springer-Verlag 1967

Authors and Affiliations

  • Diana Capello
    • 1
  • Alberte Pullman
    • 1
  1. 1.Institut de Biologie Physico-Chimique, Laboratoire de Biochimie Théoriqueassocié au CNRSParis

Personalised recommendations