Theoretica chimica acta

, Volume 67, Issue 4, pp 323–333 | Cite as

Electrostatic potentials, fields and field gradients from a general crystalline charge density

  • P. Herzig
Article

Abstract

Explicit expressions for the electrostatic potential, the electric field and the electric field gradient at the nuclear positions of a crystalline lattice are presented. They are derived for a charge density given as an expansion in terms of spherical harmonics around the nuclear sites and as a Fourier series in the interstitial. These expressions can be decomposed into contributions from the spherical region centered around the lattice site of interest, from spherical regions surrounding all the other lattice sites and a contribution from the interstitital region.

Key words

Electrostatic potential electric field electric field gradient infinite crystal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cohen, M. H., Reif, F.: Solid State Phys. 5, 321 (1957)Google Scholar
  2. 2.
    Kaufmann, E. N., Vianden, R. J.: Rev. Mod. Phys. 51, 161 (1979)Google Scholar
  3. 3.
    Rudge, W. E.: Phys. Rev. 181, 1020 (1969)Google Scholar
  4. 4.
    Rudge, W. E.: Phys. Rev. 181, 1024 (1969)Google Scholar
  5. 5.
    Weinert, M.: J. Math. Phys. 22, 2433 (1981)Google Scholar
  6. 6.
    Hama, J.: J. Phys. Soc. Japan 51, 116 (1982)Google Scholar
  7. 7.
    Sternheimer, R. M.: Phys. Rev. 80, 102 (1950); 84, 244 (1951); 95, 736 (1954); 105, 158 (1957); 146, 140 (1966); 164, 10 (1967); Phys. Rev. A 6, 1702 (1972); 9, 1783 (1974)Google Scholar
  8. 8.
    Sholl, C. A.: Proc. Phys. Soc. Lond. 91, 130 (1967)Google Scholar
  9. 9.
    Brink, D. M., Satchler, G. R.: Angular Momentum p. 54. Oxford: Clarendon Press 1968Google Scholar
  10. 10.
    Herzig, P., Neckel, A.: J. Chem. Phys. 71, 2131 (1979)Google Scholar
  11. 11.
    Abramowitz, M., Stegun, I. A.: Handbook of Mathematical Functions. New York: Dover 1965Google Scholar
  12. 12.
    Nagel, S.: Phys. Rev. B 24, 4240 (1981)Google Scholar
  13. 13.
    Steinborn, E. O.: Chem. Phys. Lett. 3, 671 (1969)Google Scholar
  14. 14.
    Nijboer, B. R. A., de Wette, F. W.: Physica 23, 309 (1957)Google Scholar
  15. 15.
    Nijboer, B. R. A., de Wette, F. W.: Physica 24, 422 (1958)Google Scholar
  16. 16.
    Euwema, R. N., Surratt, G. T.: J. Phys. Chem. Solids 36, 67 (1975)Google Scholar
  17. 17.
    Normand, J. M., Raynal, J.: J. Phys. A: Math. Gen. 15, 1437 (1982)Google Scholar
  18. 18.
    de Wette, F. W.: Phys. Rev. 123, 103 (1961)Google Scholar
  19. 19.
    Bertaut, E. F.: J. Phys. Chem. Solids 39, 97 (1978)Google Scholar
  20. 20.
    Heyes, D. M.: J. Chem. Phys. 74, 1924 (1981)Google Scholar
  21. 21.
    Blaha, P., Schwarz, K., Herzig, P.: Phys. Rev. Lett., in printGoogle Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • P. Herzig
    • 1
  1. 1.Institut für Physikalische ChemieUniversität WienViennaAustria

Personalised recommendations