Skip to main content
Log in

Porphyrins

VIII. Extended Hückel calculations on iron complexes

  • Commentationes
  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Abstract

The extended Hückel model is further developed to allow prediction of spin state and is applied to ferrous porphin complexes with H2O, CO, O2, N2 and ferric porphin complexes with OH, F, Cl, CN. The model shows that if the iron atom lies in the porphyrin plane only low or intermediate spin states are possible, with the weakest ligands just producing low spin. The high spin (“ionic”) complex can only occur with iron displaced from the plane, in which geometry CO and CN are calculated to be low spin, OH, F, Cl high spin, and H2O borderline between low and high. The model predicts that N2 will not bond and that a stable O2 complex is impossible if O2 is perpendicular to the plane. Discussion is given of the ligand field, absorption spectra, soft X-ray spectra, and Mössbauer spectra.

Résumé

Le modèle de Hückel étendu est élaboré de manière á permettre la prédiction de l'état de spin et est appliqué aux complexes de la porphine ferreuse avec H2O, CO, O2, N2 et de la porphine ferrique avec OH, F, Cl, CN. Ce modèle montre que, si l'atome de fer se trouve dans le plan de la porphyrine, seuls des états de spin bas et intermédiaires sont possibles, les ligands les plus faibles donnant seulement un spin bas. Le complexe à spin élevé (ionique) ne peut exister qu'avec le fer en dehors du plan, auquel cas on calcule un spin bas pour CO et CN, haut pour OH, F, Cl, et l'un ou l'autre pour H2O. Ce modèle permet de prédire que N2 ne se liera pas et qu'un complexe stable avec O2 est impossible si O2 est perpendiculaire au plan. On discute le champ des ligands, le spectre d'absorption, le spectre des rayons X mous et le spectre Mössbauer.

Zusammenfassung

Das erweiterte Hückelmodell wird in einer Weise ausgebaut, daß Aussagen über Spinzustände möglich werden. Das Verfahren wird auf eisen-(II)-haltige Porphyrinkomplexe mit H2O, CO, O2 und N2 als Liganden und eisen-(III)-haltige Komplexe mit OH, F, Cl und CN angewendet. Dabei zeigt sich, daß nur Zustände mit niedrigem oder mittlerem Spin möglich sind, wenn das Eisenatom in der Porphyrin-Ebene liegt, und daß dabei die schwächsten Liganden den niedrigsten Spin ergeben. Komplexe mit hohem Spin („Ionenkomplexe“) sind nur dann möglich, wenn das Eisen nicht in der Ebene liegt, und zwar haben dann der CO- und der CN-Komplex niedrigen, der OH-, F- und Cl-Komplex hohen und der H2O-Komplex entweder hohen oder niedrigen Spin. Das Modell ergibt ferner, daß N2 nicht gebunden wird und daß ein stabiler O2-Komplex nur entsteht, wenn das O2-Molekül senkrecht zur Bindungsebene steht. Zum Schluß werden Ligandenfeld, Absorptionsspektren, weiche Röntgenspektren und Mössbauerspektren diskutiert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bearden, A. J., and T. H. Moss: Non-Hemeiron proteins. San Pietro, A., Ed. Yellow Springs. Ohio: The Antioch Press 1965.

    Google Scholar 

  2. — —, and C. A. Beaudreau: Proc. Natl. Acad. Sci. (U.S.) 53, 1246 (1965).

    Article  CAS  Google Scholar 

  3. Becker, R. S., and J. B. Allison: J. physic. Chem. 67, 2662, 2675 (1963).

    Article  CAS  Google Scholar 

  4. Berthier, G., P. Millie, and A. Veillard: J. Chim. physique 62, 20 (1965).

    Google Scholar 

  5. Böke, K.: Z. physik. Chemie (Frankf.) 11, 326 (1957).

    Article  Google Scholar 

  6. Brill, A. S., and R. J. P. Williams: Biochem. J. 78, 259 (1961).

    Google Scholar 

  7. Brockway, L. O., and J. S. Anderson: Trans. Faraday Soc. 33, 1233 (1937).

    Article  CAS  Google Scholar 

  8. Calvin, M.: Rev. Pure Appl. Chem. 15, 1 (1965).

    CAS  Google Scholar 

  9. Caughey, W. S., R. M. Deal, C. Weiss, and M. Gouterman: J. Mol. Spectroskopy. 16, 451 (1965).

    Article  CAS  Google Scholar 

  10. Clementi, E.: J. chem. Physics 41, 303 (1964).

    Article  CAS  Google Scholar 

  11. —, and D. L. Raimondi: J. chem. Physics 38, 2686 (1963).

    Article  CAS  Google Scholar 

  12. Condon, E. U., and G. H. Shortley: The theory of atomic spectra, Chpt. 7: Cambridge: University Press 1951.

    Google Scholar 

  13. Cotton, F. A., and C. J. Ballhausen: J. chem. Physics 25, 617 (1956).

    Article  CAS  Google Scholar 

  14. —, and H. P. Hanson: J. chem. Physics 26, 1758 (1957).

    Article  CAS  Google Scholar 

  15. Dorough, G. D., J. R. Miller, and F. M. Huennekens: J. Am. chem. Soc. 73, 4315 (1951).

    Article  CAS  Google Scholar 

  16. Drabkin, D. L.: Haematin enzymes, p. 142–168. Falk, J. E., R. Lemberg, and R. K. Morton, Ed. Oxford: Pergamon Press 1961.

    Chapter  Google Scholar 

  17. Paper VII: Eastwood, D., L. Edwards, M. Gouterman, and J. Steinfeld: J. mol. Spectroskopy (In press).

  18. Ellfolk, N.: Acta chem. Scand. 15, 975 (1961).

    Article  CAS  Google Scholar 

  19. Estabrook, R. W.: Haematin enzymes, p. 436–456, Falk, J. E., R. Lemberg, and R. K. Morton, Ed. Oxford: Pergamon Press 1961.

    Google Scholar 

  20. Fleischer, E. B., C. K. Miller, and L. E. Webb: J. Am. chem. Soc. 86, 2342 (1964).

    Article  CAS  Google Scholar 

  21. Frankel, R.: Unpublished spectra.

  22. George, P., J. Beetlestone, and J. S. Griffith: Haematin enzymes, p. 105–141. Falk, J. E., R. Lemberg, and R. K. Morton, Ed. Oxford: Pergamon Press 1961.

    Chapter  Google Scholar 

  23. Gibson, J. F., and D. J. E. Ingram: Nature 180, 29 (1957).

    Article  CAS  Google Scholar 

  24. Gonser, U., and R. W. Grant: Biophys. J. 5, 823 (1965).

    Article  CAS  Google Scholar 

  25. Gouterman, M.: J. chem. Physics 30, 1139 (1959).

    Article  CAS  Google Scholar 

  26. Paper I: Gouterman, M.: J. mol. Spectroskopy 6, 138 (1961).

    Article  CAS  Google Scholar 

  27. Paper II: Gouterman, M., G. H. Wagniere, and L. C. Snyder: J. mol. Spectroskopy, 11, 108 (1963).

    Article  CAS  Google Scholar 

  28. Griffith, J. S.: Proc. Roy. Soc. (Lond.) 235A, 23 (1956).

    Article  CAS  Google Scholar 

  29. —: Nature 180, 29 (1957).

    Article  Google Scholar 

  30. Hamor, T. A., W. S. Caughey, and J. L. Hoard: J. Am. chem. Soc. 87, 2305 (1965).

    Article  CAS  Google Scholar 

  31. Hanania, G. I. H., A. Yeghiayan, and B. F. Cameron: Biochem. J. 98, 189 (1966).

    Article  CAS  Google Scholar 

  32. Harris, G. M.: Theoret. chim. Acta 5, 379 (1966).

    Article  CAS  Google Scholar 

  33. Hartree, E. F.: Ann. Repts. Prog. Chem. 43, 287 (1946).

    Google Scholar 

  34. Herzberg, G.: Spectra of diatomic molecules, Appendices. Princeton, N.J.: D. Van Nostrand 1950.

    Google Scholar 

  35. Hinze, J., and H. H. Jaffé: Can. J. Chem. 41, 1315 (1963).

    Article  CAS  Google Scholar 

  36. Hoard, J. L., M. J. Hamor, and T. A. Hamor: J. Am. chem. Soc. 85, 2334 (1963).

    Article  CAS  Google Scholar 

  37. — — —, and W. S. Caughey: J. Am. chem. Soc. 87, 2312 (1965).

    Article  CAS  Google Scholar 

  38. Jorgensen, C. K.: Absorption spectra and chemical bonding in complexes. Oxford: Pergamon Press 1961.

    Google Scholar 

  39. Keilin, D., and E. F. Hartree: Biochem. J. 49, 88 (1951).

    Article  CAS  Google Scholar 

  40. — —: Biochem. J. 61, 153 (1955).

    Article  CAS  Google Scholar 

  41. Kendrew, J. C.: Science 139, 1259 (1963).

    Article  CAS  Google Scholar 

  42. Koenig, D. F.: Acta Cryst. 18, 663 (1965).

    Article  CAS  Google Scholar 

  43. Kotani, M.: Prog. Theoret. Phys. (Kyoto), supplement No. 17, p. 4 (1961).

    Article  Google Scholar 

  44. —: Advan. chem. Physics 7, 159 (1964).

    Google Scholar 

  45. Lang, G., and W. Marshall: J. mol. Biol. 18, 385 (1966).

    Article  CAS  Google Scholar 

  46. Lemberg, R., and J. W. Legge: Hematin compounds and bile pigments, p. 748. New York: Interscience 1949.

    Google Scholar 

  47. Lever, A. P. B.: J. chem. Soc. (Lond.) 1965, 1821.

  48. Loach, P. A. and M. Calvin: Biochemistry 2, 361 (1963).

    Article  CAS  Google Scholar 

  49. Lumry, R., A. Solkakken, J. Sullivan, and L. H. Reyerson: J. Am. chem. Soc. 84, 142 (1962).

    Article  CAS  Google Scholar 

  50. McClure, D. S.: Radiation research, Supplement 2, 218 (1960).

    Article  CAS  Google Scholar 

  51. McLaren, A. D., and D. Shugar: Photochemistry of proteins and nucleic acids, p. 110. New York: Pergamon Press Book, The MacMillan Co. 1964.

    Book  Google Scholar 

  52. Mulliken, R. S.: J. Chim. physique 46, 497, 673 (1949).

    CAS  Google Scholar 

  53. —: J. chem. Physics 23, 1833, 1841 (1955).

    Article  CAS  Google Scholar 

  54. Offenhartz, P. O'D.: J. chem. Physics 42, 3566 (1965).

    Article  CAS  Google Scholar 

  55. Ohno, K., Y. Tanabe, and F. Sasaki: Theoret. chim. Acta 1, 378 (1962).

    Article  Google Scholar 

  56. Orgel, L. E.: Haematin enzymes, p. 1–13, Falk, J. E., R. Lemberg, and R. K. Morton, Ed. Oxford: Pergamon Press 1961.

    Chapter  Google Scholar 

  57. Pauling, L., and C. D. Coryell: Proc. Nat. Acad. Sci. (U.S.) 22, 159, 210 (1936).

    Article  CAS  Google Scholar 

  58. —, and E. B. Wilson: Introduction to quantum mechanics, Chpt. 7. New York: McGraw-Hill 1935.

    Google Scholar 

  59. Penfold, B. R., and J. A. Grigor: Acta Cryst. 12, 850 (1959).

    Article  CAS  Google Scholar 

  60. Platt, J. R.: Radiation biology, Vol. III, Chpt. 2. Hollaender, A., Ed. New York: McGraw-Hill 1956.

    Google Scholar 

  61. Powell, H. M., and G. W. R. Bartindale: J. chem. Soc. (Lond.) 1945, 799.

  62. Pullman, B., C. Spanjaard, and G. Berthier: Proc. Natl. Acad. Sci. (U.S.) 46, 1011 (1960).

    Article  CAS  Google Scholar 

  63. Racah, G.: Phys. Rev. 62, 438 (1942).

    Article  CAS  Google Scholar 

  64. Roothaan, C. C. J.: Rev. mod. Phys. 23, 69 (1951).

    Article  CAS  Google Scholar 

  65. Scheler, W.: Biochem. Z. 332, 344, 542 (1960).

    CAS  Google Scholar 

  66. —, G. Schoffa, and F. Jung: Biochem. Z. 329, 232 (1957).

    CAS  Google Scholar 

  67. Silvers, S., and A. Tulinsky: J. Am. chem. Soc. 86, 927 (1964).

    Article  CAS  Google Scholar 

  68. Skinner, H. A., and F. H. Sumner: J. inorg. nucl. Chem. 4, 245 (1957).

    Article  CAS  Google Scholar 

  69. Slater, J. C.: Quantum theory of atomic structure, Vol. I. App. 21; Vol. II, App. 21. New York: McGraw-Hill 1960.

    Google Scholar 

  70. Stryer, L., J. C. Kendrew, and H. C. Watson: J. mol. Biol. 8, 96 (1964).

    Article  CAS  Google Scholar 

  71. Urry, D.: Proc. Natl. Acad. Sci. (U.S.) 54, 640 (1965).

    Article  CAS  Google Scholar 

  72. Wang, J. H.: Oxygenases, Chapt. 11. Hayaishi, O., Ed. New York: Academic Press 1962.

    Google Scholar 

  73. Watson, R. E.: Phys. Rev. 119, 1934 (1960).

    Article  CAS  Google Scholar 

  74. Paper III: Weiss, C., H. Kobayashi, and M. Gouterman: J. mol. Speotroskopy. 16, 415 (1965).

    Article  CAS  Google Scholar 

  75. Wolfsberg, M., and L. Helmholtz: J. chem. Physics 20, 837 (1952).

    Article  CAS  Google Scholar 

  76. Zerner, M.: Ph. D. Thesis, Dept. of Chemistry, Harvard University (1966).

  77. Paper IV: Zerner, M., and M. Gouterman: Theoret. chim. Acta 4, 44 (1966).

    Article  CAS  Google Scholar 

  78. Papers V and VI: Zerner, M., and M. Gouterman: Inorg. Chem. 5, 1699, 1707 (1966).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

National Institutes of Health Pre-Doctoral Fellow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zerner, M., Gouterman, M. & Kobayashi, H. Porphyrins. Theoret. Chim. Acta 6, 363–400 (1966). https://doi.org/10.1007/BF00528464

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00528464

Keywords

Navigation