Skip to main content
Log in

Semi-empirical all valence electrons SCF-MO-CNDO theory

III. Orbital energies and ionization potentials

  • Commentations
  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Abstract

Orbital energy levels, calculated by the semi-empirical SCF-MO-CNDO theory developed previously, are compared with experimental ionization potentials assuming that Koopmans' theorem is valid. Most of the energy levels are in much better agreement with experiment than those calculated from either the Pople-Segal CNDO/2 theory or the Extended Hückel Theory. The results are used to assign observed ionization potentials to specific molecular orbitals for molecules for which this assignment has not been determined experimentally.

Zusammenfassung

Mit unserer SCF-MO-CNDO-Methode berechnete Orbitalenergien werden mit experimentellen Ionisationspotentialen verglichen. Die übereinstimmung ist besser als bei der erweiterten Hückeloder der CNDO2-Methode von Pople und Segal.

Résumé

Les niveaux d'énergie orbitale calculés à l'aide de la théorie semiempirique SCF-MO-CNDO, sont comparés avec les potentiaux experimentaux d'ionisation en admettant la validité de le théorème de Koopmans. La plupart des niveaux d'énergie sont en meilleur accord avec l'expérience que lesquels calculés selon la méthode Pople-Segal CNDO/2 ou la méthode d'Hückel extensé. Puis on a coordonné les résultats avec des orbitales moléculaires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Roothaan, C. C. J.: Rev. mod. Physics 23, 69 (1951).

    Article  CAS  Google Scholar 

  2. Pople, J. A., D. P. Santry, and G. A. Segal: J. chem. Physics 43, S 129 (1965).

    Article  Google Scholar 

  3. —, and G. A. Segal: J. chem. Physics 43, S 136 (1965).

    Article  Google Scholar 

  4. — —: J. chem. Physics 44, 3289 (1966).

    Article  CAS  Google Scholar 

  5. Santry, D. P., and G. A. Segal: J. chem. Physics 47, 158 (1967).

    Article  CAS  Google Scholar 

  6. Sichel, J., and M. A. Whitehead: Theoret.chim. Acta (Berl.) 7, 32 (1967).

    Article  CAS  Google Scholar 

  7. — —: Theoret. chim. Acta (Berl.) 11, 220 (1968).

    Article  CAS  Google Scholar 

  8. Peters, D.: J. chem. Physics 45, 3474 (1966).

    Article  CAS  Google Scholar 

  9. Turner, D. W., and M. I. Al-Joboury: J. chem. Physics 37, 3007 (1962).

    Article  CAS  Google Scholar 

  10. Roothaan, C. C. J.: Rev. mod. Physics 32, 179 (1960); 23, 69 (1951).

    Article  Google Scholar 

  11. Cotton, F. A.: Chemical applications of group theory. New York: Interscience 1963.

    Google Scholar 

  12. Report on notation for the spectra of polyatomic molecules: J. chem. Physics 23, 1997 (1955).

  13. Al-Joboury, M. I., and D. W. Turner: J. chem. Soc. (London) 1963, 5141.

  14. Frost, D. C., C. A. McDowell, and D. A. Vroom: Canad. J. Chem. 45, 1343 (1967).

    Article  CAS  Google Scholar 

  15. Field, F. H., and J. L. Franklin: Electron impact phenomena and the properties of gaseous ions.New York: Academic Press 1957.

    Google Scholar 

  16. Watanabe: J. chem. Physics 22, 1564 (1954); 26, 542 (1957).

    Article  CAS  Google Scholar 

  17. Herzberg, G.: Spectra of diatomic molecules. Princeton (N.J.): Van Nostrand 1950.

    Google Scholar 

  18. Collin, J. E., and J. Delwiche: Canad. J. Chem. 45, 1875, 1883 (1967).

    Article  CAS  Google Scholar 

  19. Al-Joboury, M. I., and D. W. Turner: J. chem. Soc. (London) 1964, 4434.

  20. Turner, D. W., and D. P. May: J. chem. Physics 46, 1156 (1967).

    Article  CAS  Google Scholar 

  21. Dewar, M. J. S., and G. Klopman: J. Amer. chem. Soc. 89, 3089 (1967).

    Article  CAS  Google Scholar 

  22. Newton, M. D., F. P. Boer, and W. N. Lipscomb: J. Amer. chem. Soc. 88, 2353, 2361, 2367 (1966).

    Article  CAS  Google Scholar 

  23. Turner, D. W., and D. P. May: J. chem. Physics 45, 471 (1966).

    Article  CAS  Google Scholar 

  24. Browne, J. C.: J. chem. Physics 41, 3495 (1964).

    Article  CAS  Google Scholar 

  25. Fehlner, T. P., and W. S. Koski: J. Amer. Chem. Soc. 86, 581, 2733 (1964).

    Article  CAS  Google Scholar 

  26. Al-Joboury, M. I., and D. W. Turner: J. chem. Soc. (London) (B) 1967, 373.

  27. Frost, D. C., C. A. McDowell, and D. A. Vroom: J. chem. Physics 46, 4255 (1967).

    Article  CAS  Google Scholar 

  28. — — —: Proc. Roy. Soc. (London) A 296, 566 (1967).

    Article  CAS  Google Scholar 

  29. Al-Joboury, M. I., D. P. May, and D. W. Turner: J. chem. Soc. (London) 1965, 6350.

  30. Radwan, T. N., and D. W. Turner: J. chem. Soc. (London) (A) 1966, 85.

  31. Baker, C., and D. W. Turner: Chem. Commun. 1967, 797.

  32. Frost, D. C., and C. A. McDowell: Proc. Roy. Soc. (London) A 241, 194 (1957).

    Article  CAS  Google Scholar 

  33. Morrison, J. D., and A. J. C. Nicholson: J. chem. Physics 20, 1021 (1952).

    Article  CAS  Google Scholar 

  34. Watanabe, K., T. Nakayama, and J. Mottl: J. Quant. Spectry. Radiat. Transfer 2, 369 (1963).

    Article  Google Scholar 

  35. McLean, A. D., and M. Yoshimine: Tables of linear molecular wave functions. International Business Machines Corporation, San Jose, California 1967.

    Google Scholar 

  36. Krauss, M.: J. chem. Physics 38, 564 (1963).

    Article  CAS  Google Scholar 

  37. Moccia, R.: J. chem. Physics 40, 2176, 2186 (1964).

    Article  CAS  Google Scholar 

  38. Cade P. E., K. D. Sales, and A. C. Wahl: J. chem. Physics 44, 1973 (1966).

    Article  CAS  Google Scholar 

  39. Moskowitz, J. W., and M. C. Harrison: J. chem. Physics 42, 1726 (1965).

    Article  CAS  Google Scholar 

  40. Wahl, A. C.: J. chem. Physics 41, 2600 (1964).

    Article  CAS  Google Scholar 

  41. Hinze, J.: Ph. D. Dissertation, University of Cincinnati, Cincinnati, Ohio (1962).

    Google Scholar 

  42. Pariser, R.: J. chem. Physics 21, 568 (1953).

    Article  CAS  Google Scholar 

  43. Mrozowski, S.: Rev. mod. Phys. 14, 216 (1942); Phys. Rev. 60, 730 (1941); 62, 270 (1942); 72, 682 (1947).

    Article  CAS  Google Scholar 

  44. McLean, A. D.: J. chem. Physics 32, 1595 (1960).

    Article  CAS  Google Scholar 

  45. Streitwieser, A.: Molecular orbital theory for organic chemists. New York: Wiley 1961.

    Google Scholar 

  46. Salem, L.: The molecular orbital theory of conjugated systems. New York: Benjamin 1966.

    Google Scholar 

  47. Murrell, J. N., S. F. A. Kettle, and J. M. Tedder: Valence theory. New York: Wiley 1965.

    Google Scholar 

  48. Ransil, B. J.: Rev. mod. Physics 32, 239, 245 (1960).

    Article  CAS  Google Scholar 

  49. Frost, D. C., and C. A. McDowell: Canad. J. Chem. 38, 407 (1960).

    Article  CAS  Google Scholar 

  50. Irsa, A. P., and L. Friedman: J. inorg. nuclear Chem. 6, 77 (1958).

    Article  CAS  Google Scholar 

  51. H. Neuert, and H. Clasen: Z. Naturforsch. 7A, 410 (1952).

    Google Scholar 

  52. Wada, Y., and R. W. Kiser: Inorg. Chem. 3, 174 (1964).

    Article  CAS  Google Scholar 

  53. Cullen, W. R., and D. C. Frost: Canad. J. Chem. 40, 390 (1962).

    Article  CAS  Google Scholar 

  54. Price, W. C., J. P. Teegan, and A. D. Walsh: Proc. Roy. Soc. (London) A 201, 600 (1950).

    Article  CAS  Google Scholar 

  55. Hoffmann, R.: J. chem. Physics 39, 1397 (1963).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Part 1 in Theoret. chim. Acta (Berl.) 7, 32 (1967).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sichel, J.M., Whitehead, M.A. Semi-empirical all valence electrons SCF-MO-CNDO theory. Theoret. Chim. Acta 11, 239–253 (1968). https://doi.org/10.1007/BF00528342

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00528342

Keywords

Navigation