Advertisement

Theoretica chimica acta

, Volume 25, Issue 1, pp 83–88 | Cite as

Molecular electrostatic potentials: Comparison of ab initio and CNDO results

  • C. Giessner-Prettre
  • A. Pullman
Commentationes

Abstract

The possibilities of utilization of CNDO wave functions for computing molecular electrostatic potentials are studied by comparison with ab initio results for H2O and H2CO.

Keywords

Physical Chemistry Inorganic Chemistry Organic Chemistry Wave Function Electrostatic Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

Les possibilités d'utilisation de fonctions d'onde CNDO pour le calcul des potentiels électrostatiques moléculaires sont étudiées par comparaison avec des résultats ab initio pour H2O et H2CO.

Zusammenfassung

Die Möglichkeiten der Verwendung von CNDO-Wellenfunktionen zur Berechnung molekularer elektrostatischer Potentiale werden durch Vergleich mit ab initio Rechnungen für H2O und H2CO untersucht.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bonaccorsi,R., Petrongolo,E., Scrocco,E., Tomasi,J.: Quantum aspects of heterocyclic compounds in chemistry and biochemistry, Jerusalem Symposia, Vol. II, 181 (1970).Google Scholar
  2. 2.
    —, Scroccom,E., Tomasi,J.: J. chem. Physics 52, 5270 (1970).Google Scholar
  3. 3.
    —— —: Theoret. chim. Acta (Berl.) 20, 331 (1971).Google Scholar
  4. 4.
    - Pullman, A., Scrocco, E., Tomasi, J.: Theoret. chim. Acta (Berl.), in press.Google Scholar
  5. 5.
    — — — —: Chem. Physics Letters 12, 622 (1972).Google Scholar
  6. 6.
    Giessner-Prettre,C., Pullman,A.: C. R. Acad. Sci. 272c, 750 (1971).Google Scholar
  7. 7.
    Bonaccorsi,R., et al.: Private communication and Ref. [3].Google Scholar
  8. 8.
    Aung,S., Pitzer,R.M., Chan,S.L.: J. chem. Physics 45, 3457 (1966).Google Scholar
  9. 9.
    Switkes,E., Stevens,R.M., Lipscomb,W.N.: J. chem. Physics 51, 5229 (1969).Google Scholar
  10. 10.
    Olah,G.A., O'Brien,D.H., Calin,M.: J. Amer. chem. Soc. 89, 3582 (1967).Google Scholar
  11. 11.
    Pople,J.A., Segal,G.A.: J. chem. Physics 43, S 136 (1965).Google Scholar
  12. 12.
    Löwdin,P.O.: J. chem. Physics 18, 365 (1950).Google Scholar
  13. 13.
    Giessner-Prettre,C., Pullman,A.: Theoret. chim. Acta (Berl.) 11, 159 (1968).Google Scholar
  14. 14.
    Shillady,D.D., Billingsley,F.P., Bloor,J.E.: Theoret. chim. Acta (Berl.) 21, 1 (1961).Google Scholar
  15. 15.
    Aung,S., Pitzer,R.M., Chan,S.I.: J. chem. Physics 49, 2071 (1961).Google Scholar
  16. 16.
    Stevens,R.M.: J. chem. Physics 52, 1397 (1970).Google Scholar
  17. 17.
    Grahn,R.: Arkiv fysik 19, 147 (1961).Google Scholar
  18. 18.
    de Paz, M., Ehrenson, S., Friedman, L.: 52, 3362 (1970).Google Scholar
  19. 19.
    Moskowitz,J.M., Harrison,M.C.: J. chem. Physics 43, 3550 (1965).Google Scholar
  20. 20.
    MacIver,J.W., Jr., Coppens,P., Novak,D.: Chem. Physics Letters 11, 8 (1971). Prof. Dr. A. Pullman Institut de Biologie Physico-Chimique 13, rue Pierre et Marie Curie Paris 5è, FranceGoogle Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • C. Giessner-Prettre
    • 1
  • A. Pullman
    • 1
  1. 1.Laboratoire de Biochimie Théorique associé au C.N.R.S.Institut de Biologie Physico-ChimiqueParis 5èFrance

Personalised recommendations