Theoretica chimica acta

, Volume 68, Issue 6, pp 431–444 | Cite as

Polarized basis sets and the calculation of infrared intensities from nuclear electric shielding tensors

  • Krzysztof Wolinski
  • Björn O. Roos
  • Andrzej J. Sadlej
Radiation

Abstract

The idea of the basis set polarization which follows from the known dependence of basis set functions on the perturbation strength is applied to the calculation of the dipole moment derivatives with respect to nuclear displacements. The differentiation of the dipole moment function is replaced by the straightforward evaluation of derivatives of the intramolecular electric field with respect to the external electric field strength. The method and its efficiency are illustrated by a series of calculations of the dipole moment derivatives for the water molecule. Already a polarized basis set of 26 CGTO's derived from the minimal CGTO basis set provides fairly reasonable results.

Key words

Basis sets Perturbation-dependent basis sets Polarized basis sets Hellmann-Feynman theorem Infrared intensities Molecular properties H2

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Steele, D., Person, W. B. In: Specialist Periodical Report. Molecular Spectroscopy. Vol. 2, pp. 357–438. London: Chemical Society 1975; see also recent reviews in: Vibrational Intensities in Infrared and Raman Spectroscopy. Person, W. B., Zerbi, G. (eds.) Amsterdam: Elsevier 1982Google Scholar
  2. 2.
    Steele, D.: Adv. IR Raman Spectrosc. 1, 232 (1975)Google Scholar
  3. 3.
    John, I. G., Bacskay, G., Hush, N. S.: Chem. Phys. 51, 49 (1980) and references thereinGoogle Scholar
  4. 4.
    Komornicki, A., McIver Jr., J. W.: J. Chem. Phys. 70, 2014 (1979); Komornicki, A., Jaffe, R. L.: J. Chem. Phys. 71, 2150 (1979); Carlowitz von, S., Ziel, W., Pulay, P., Boggs, J. E.: J. Mol. Struct. Teochem. 87, 113 (1982): Fredkin, D. R., Komornicki, A., White, S. R., Wilson, K. R.: J. Chem. Phys. 78, 7077 (1983)Google Scholar
  5. 5.
    Bacskay, G. B., Saebø, S., Taylor, P. R.: Chem. Phys. in the pressGoogle Scholar
  6. 6.
    Pulay, P. In: Schaefer III, H. F. (ed.), Applications of Molecular Electronic Structure Theory, New York: Plenum Press 1977; Pulay, P.: J. Chem. Phys. 78, 5043 (1983)Google Scholar
  7. 7.
    Swanstrøm, P., Hegelund, F. In: Diercksen, G. H. F., Sutcliffe, B. T., Veillard, A. (eds.), Computational Techniques in Quantum Chemistry and Molecular Physics, p. 299. Dordrecht: Reidel Publ. Co. 1975Google Scholar
  8. 8.
    Lazzeretti, P., Zanasi, R.: Chem. Phys. Letters 112, 103 (1984)Google Scholar
  9. 9.
    Lazzeretti, P., Zanasi, R.: Chem. Phys. Letters 71, 529 (1980); Lazzeretti, P., Zanasi, R.: J. Chem. Phys., to be publishedGoogle Scholar
  10. 10.
    Lazzeretti, P., Zanasi, R.: Phys. Rev. A24, 1696 (1981)Google Scholar
  11. 11.
    Roos, B. O., Sadlej, A. J.: Chem. Phys., 94 43 (1985)Google Scholar
  12. 12.
    Biarge, J. F., Herranz, J., Morcillo, J.: An. R. Soc. Esp. Fis. Quim. Ser. A57, 81 (1961); Morcillo, L. J., Zamorano, J., Heredia, J. M. V.: Spectrochim. Acta 22, 1969 (1966).Google Scholar
  13. 13.
    Person, W. B., Newton, J. H.: J. Chem. Phys. 61, 1040 (1974); Person, W. B., Newton, J. H.: J. Chem. Phys. 64, 3036 (1976)Google Scholar
  14. 14.
    Epstein, S. T.: The Variation Method in Quantum Chemistry. New York: Academic Press 1974Google Scholar
  15. 15.
    Hirschfelder, J. O., Epstein, S. T., Byers-Brown, W.: Adv. Quantum Chem. 1, 284 (1964).Google Scholar
  16. 16.
    Gerrat, J., Mills, I. M.: J. Chem. Phys. 49, 1719, 1730 (1968); Thomson, K., Swanstrøm, P.: Mol. Phys. 26, 735, 751 (1974)Google Scholar
  17. 17.
    Dodds, J. L., McWeeny, R., Sadlej, A. J.: Mol. Phys. 34, 1779 (1977)Google Scholar
  18. 18.
    Epstein, S. T., Sadlej, A. J.: Int. J. Quantum Chem. 15, 147 (1979); Woliński, K., Sadlej, A. J.: Mol. Phys. 41, 1419 (1980)Google Scholar
  19. 19.
    Nerbrant, P.-O., Roos, B. O., Sadlej, A. J.: Int. J. Quantum Chem. 15, 135 (1979); Diercksen, G. H. F., Roos, B. O., Sadlej, A. J.: Chem. Phys. 59, 29 (1981)Google Scholar
  20. 20.
    Dalgarno, A.: Adv. Phys. 11, 281 (1962)Google Scholar
  21. 21.
    Roos, B., Siegbahn, P.: Theoret. Chim. Acta (Berl.) 17, 209 (1970)Google Scholar
  22. 22.
    Huzinaga, S.: J. Chem. Phys. 42, 1293 (1965)Google Scholar
  23. 23.
    Snyder, L. C., Basch, H.: Molecular Wave Functions and Properties. New York: Wiley 1972Google Scholar
  24. 24.
    Huzinaga, S.: Approximate Atomic Functions. Technical Report: Division of Theoretical Chemistry, Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada 1971Google Scholar
  25. 25.
    Salez, C., Veillard, A.: Theoret. Chim. Acta (Berl.) 11, 441 (1968)Google Scholar
  26. 26.
    Sadlej, A. J.: Mol. Phys. 34, 731 (1977)Google Scholar
  27. 27.
    Dunning Jr., T. H., Hay, P. J. In: Methods of Electronic Structure Theory, Vol. 3, p. 1. H. F. Schaefer III, (ed.) New York: Plenum Press 1977Google Scholar
  28. 28.
    Zilles, B. A., Person, W. B.; J. Chem. Phys. 79, 65 (1983)Google Scholar
  29. 29.
    Nakatsuji, H., Kanda, K., Yonezawa, T.; J. Chem. Phys. 77, 3109 (1982)Google Scholar
  30. 30.
    Sadlej, A. J.: Acta Phys. Polon. A53, 297 (1978)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Krzysztof Wolinski
    • 1
  • Björn O. Roos
    • 1
  • Andrzej J. Sadlej
    • 1
  1. 1.Theoretical Chemistry, Chemical CenterUniversity of LundLundSweden

Personalised recommendations