Advertisement

Theoretica chimica acta

, Volume 71, Issue 5, pp 375–384 | Cite as

Dynamic correlation for MCSCF wave functions: An effective potential method

  • Björn O. Roos
  • Mikołaj Szulkin
  • Michał Jaszuński
Article

Abstract

A method is suggested which allows the inclusion of dynamic correlation into CASSCF calculations. An effective Coulomb hole potential is added to the Hamiltonian. The potential has a simple form, which allows its implementation into existing LCAO programs using Gaussian integral packages. The parameters appearing in the potential are determined by fitting to empirical valence correlation energies for first row atoms. Calculations of ionization energies and electron affinities show considerable improvement compared to the MCSCF values. Test calculations on three molecules give the following results, H2re=0.745 (0.741) Å, De=4.62 (4.75) eV; N2re=1.099 (1.098) Å, De= 10.42 (9.91) eV; O2re=1.198 (1.207) Å, De=4.73 (5.21) eV. Experimental values within parenthesis.

Key words

MCSCF Correlation Effective potential 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McWeeny R (1976) In: Pullman B, Parr R (eds) The new world of quantum chemistry. Reidel, DordrechtGoogle Scholar
  2. 2.
    Roos BO, Taylor PR, Siegbahn PEM (1980) Chem Phys 48:157; Siegbahn PEM, Almlöf J, Heiberg A, Roos BO (1981) J Chem Phys 74:2384Google Scholar
  3. 3.
    Roos BO: Adv Chem Phys, in pressGoogle Scholar
  4. 4.
    For a review of the CI method see for example: Shavitt I (1977) In: Schaefer III F (ed) Methods of electron structure theory. Plenum Press, New YorkGoogle Scholar
  5. 5.
    Walch SP, Bauschlicher CW Jr, Roos BO, Nelin CJ (1983) Chem Phys 103:175Google Scholar
  6. 6.
    Goodgame MM, Goddard III WA (1985) Phys Rev Lett 54:661Google Scholar
  7. 7.
    Clementi E (1965) IBM J Res Dev 9:1Google Scholar
  8. 8(a).
    Ruedenberg K, Schmidt MW, Gilbert MM, Elbert ST (1982) Chem Phys 71:41; (1982) Chem Phys 71:51; (1982) Chem Phys 71:65Google Scholar
  9. 8(b).
    Schmidt MW, Lam MTB, Elbert ST, Ruedenberg K (1985) Theor Chim Acta 68:69Google Scholar
  10. 8(c).
    Lam B, Schmidt MW, Ruedenberg K (1985) J Phys Chem 89:2221Google Scholar
  11. 9.
    Chong DP, Langhoff SR, Bauschlicher CW Jr, Walch SP, Partridge H (1986) J Chem Phys 85:2850Google Scholar
  12. 10.
    Essén H (1986) Int J Quantum Chem 30:89Google Scholar
  13. 11.
    Blomqvist J, Essén H: manuscriptGoogle Scholar
  14. 12.
    Colle R, Salvetti O (1975) Theor Chim Acta 37:329Google Scholar
  15. 13.
    Colle R, Salvetti O (1979) Theor Chim Acta 53:55Google Scholar
  16. 14.
    Cohen L, Santhanam P, Frisberg C (1980) Int J Quantum Chem Symposium 14:143Google Scholar
  17. 15.
    Almlöf J (1974) University of Stockholm, USIP report 74-29Google Scholar
  18. 16.
    Clementi E (1963) J Chem Phys 38:2248; (1963) J Chem Phys 39:175Google Scholar
  19. 17.
    Saunders VR (1983) In: Diercksen GHF, Wilson S (eds) Methods of computational molecular physics. Reidel, DordrechtGoogle Scholar
  20. 18.
    The authors are grateful to A.J. Sadlej for help in modifying his one-electron integral code to evaluate these integralsGoogle Scholar
  21. 19.
    von Niessen W (1972) J Chem Phys 56:4290Google Scholar
  22. 20.
    Moore CC (1949) Atomic Energy Levels, vol. I. Circular National Bureau of Standards, WashingtonGoogle Scholar
  23. 21.
    Branscombe LM (1962) In: Bates DR (ed) Atomic and molecular processes. Academic Press, New YorkGoogle Scholar
  24. 22.
    Huber KP, Herzberg G (1979) Constants of diatomic molecules. Van Nostrand Reinhold, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Björn O. Roos
    • 1
  • Mikołaj Szulkin
    • 1
  • Michał Jaszuński
    • 1
  1. 1.Department of Theoretical ChemistryChemical CenterLundSweden

Personalised recommendations